戊吡虫胍对棉铃虫中枢神经细胞电压门控钙通道和钾通道的影响 *

应用昆虫学报, 2020, 57(4): 841-849 doi: 10.7679/j.issn.2095-1353.2020.086

昆虫抗药性专栏

戊吡虫胍对棉铃虫中枢神经细胞电压门控钙通道和钾通道的影响 *

关丹阳,1,**, 姜笑维1, 李清亚1, 刘晓1, 马永强2, 陈强1, Li-Byarlay Hongmei3, 贺秉军,1,***

1. 南开大学生命科学学院,生物活性材料教育部重点实验室,天津 300071

2. 中国农业大学理学院应用化学系,北京 100193

3. 中央州立大学农业与生命科学系农业研究与开发计划,Wilberforce OH 45384

Effects of Guadipyr on voltage-gated calcium and potassium channels in central neurons of Helicoverpa armigera

GUAN Dan-Yang,1,**, JIANG Xiao-Wei1, LI Qing-Ya1, LIU Xiao1, MA Yong-Qiang2, CHEN Qiang1, LI-Byarlay Hongmei3, HE Bing-Jun,1,***

1. The Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China

2. Department of Applied Chemistry, China Agricultural University, Beijing 100093, China

3. Agricultural Research and Develop Program, Department of Agriculture and Life Science, Central State University, Wilberforce OH 45384, U.S.A

通讯作者: *** E-mail:hebj@nankai.edu.cn

**第一作者First author,E-mail: dy13512892573@163.com

收稿日期: 2020-01-10   接受日期: 2020-04-9   网络出版日期: 2020-07-27

基金资助: *国家自然科学基金.  31871992,31371974

Corresponding authors: *** E-mail:hebj@nankai.edu.cn

Received: 2020-01-10   Accepted: 2020-04-9   Online: 2020-07-27

摘要

【目的】 戊吡虫胍是将新烟碱类和缩氨脲类杀虫剂杀虫活性部分重新组合的新型杀虫剂。但对于该类杀虫剂究竟如何影响离子通道,通道门控特性和功能是如何变化目前尚未见报道。本实验旨在明确该杀虫剂是否影响电压门控钙通道和钾通道的门控过程,探究其是否为该杀虫剂的潜在作用靶标。 【方法】 应用全细胞膜片钳技术检测戊吡虫胍对棉铃虫Helicoverpa armigera Hübner中枢神经细胞电压门控Ca 2+通道和K +通道的影响。【结果】 戊吡虫胍作用后Ⅰ-Ⅴ曲线和激活曲线均向超极化方向移动10-15 mV,具有显著性统计学差异(P<0.05)。稳态失活曲线向超极化方向移动约5 mV,不具有统计学差异(P>0.05)。电压门控Ca 2+通道峰值电流(Ipeak)有不同程度的降低。随着浓度增大Ipeak降低有减小的趋势。此外,1 μmol∙L –1戊吡虫胍作用后钙离子的窗口电流(Iw)面积增加幅度较10 μmol∙L –1和100 μmol∙L –1大,为93.20%。提示在一定的测试电压下,该药物作用后处于激活状态的Ca 2+通道数目增多。另外,其作用后电压门控钾通道Ipeak降低。随着浓度增大Ipeak降低有减小的趋势。同时Ⅰ-Ⅴ曲线下移,激活曲线向去极化方向移动约8 mV,不具有统计学差异(P>0.05)。这表明戊吡虫胍作用后K +通道在较高电位下才能激活。【结论】 戊吡虫胍能够有效抑制Ca 2+通道和K +通道Ipeak,并使通道的激活曲线和失活曲线发生移动,影响Ca 2+通道和K +通道的门控特性。表明棉铃虫中枢神经细胞上的电压门控Ca 2+通道和K +通道是戊吡虫胍的潜在作用靶标之一。

关键词: 戊吡虫胍 ; 棉铃虫 ; 电压门控Ca 2+通道 ; 电压门控K +通道 ; 全细胞膜片钳

Abstract

[Objectives] Guadipyr is a novel insecticide that has both neonicotinoid and semicarbazone insecticidal activity. How it affects ion channels and channel gating characteristics and functions is currently unknown. We examined the effects of Guadipyr on voltage-gated calcium and potassium channels, and explored whether these channels are potential targets for this pesticide. [Methods] The effects of three concentrations (1, 10, and 100 μmol∙L –1) of Guadipyr on Ca 2+and K + channels were studied using the patch clamp technique. [Results] All three concentrations of Guadipyr significantly (P<0.05) shifted Ca 2+channel Ⅰ-Ⅴ and activation curves about 10-15 mV in the negative direction. The inactivation curves of Ca 2+channels were also shifted 5 mV towards the hyperpolarizing direction, which is a not significant shift (P>0.05). The Ca 2+peak current was significantly decreased by Guadipyr treatment relative to the control. The Ipeak decreased more slowly as the concentration of Guadipyr increased. The area of window current increased the most (93.20%) following treatment with 1 μmol∙L –1 Guadipyr than by treatment with 10 μmol∙L –1 and 100 μmol∙L –1. The number of Ca 2+ channels activated increased after Guadipyr treatment at a test voltage of ﹣60 mV to +10 mV. The K +peak current decreased gradually when Guadipyr was added to the external solution; the Ipeak decreased more slowly as the Guadipyr concentration increased from 10 μmol∙L –1 to 100 μmol∙L –1. Ⅰ-Ⅴ curves declined and the activation of K +channels was shifted 8 mV towards the depolarizing direction, which was not significant (P>0.05). This shows that K + channels can be activated at higher potentials by Guadipyr. [Conclusion] Guadipyr can effectively inhibit the Ipeak of the Ca 2+and K +channels, and shift the activation and inactivation curves of these channels, thereby affecting the gating of Ca 2+ channels and K + channels. Therefore, Ca 2+ and K + channels in the central neurons of H. armigera are potential Guadipyr target sites.

Keywords: Guadipyr ; Helicoverpa armigera ; voltage-gated calcium channels ; voltage-gated potassium channels ; Whole-cell Patch Clamp Technique

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

关丹阳, 姜笑维, 李清亚, 刘晓, 马永强, 陈强, Li-Byarlay Hongmei, 贺秉军. 戊吡虫胍对棉铃虫中枢神经细胞电压门控钙通道和钾通道的影响 *. 应用昆虫学报[J], 2020, 57(4): 841-849 doi:10.7679/j.issn.2095-1353.2020.086

GUAN Dan-Yang, JIANG Xiao-Wei, LI Qing-Ya, LIU Xiao, MA Yong-Qiang, CHEN Qiang, LI-Byarlay Hongmei, HE Bing-Jun. Effects of Guadipyr on voltage-gated calcium and potassium channels in central neurons of Helicoverpa armigera. Chinese Journal of Applied Entomology[J], 2020, 57(4): 841-849 doi:10.7679/j.issn.2095-1353.2020.086

戊吡虫胍(Guadipyr, Gua)是2008年中国农业大学研发的新型杀虫剂,是将新烟碱类和缩氨脲类杀虫剂杀虫活性部分的重新组合,兼具新烟碱类和钠离子通道抑制剂的活性特点(Qi et al.,2013)。经过大田试验验证,其对蚜虫和褐飞虱Nilaparvata lugens Stål等害虫具有很好的防治效果,且对哺乳动物等毒性较低(Su et al.,2012)。由于其高效,成本低廉和潜在的环境优势,戊吡虫胍具有较大的潜在市场价值。但该杀虫剂究竟是如何影响离子通道,通道门控特性及其功能是如何变化,从而导致害虫致死目前尚未见报道。这很大程度限制了该杀虫剂的广泛应用。

棉铃虫Helicoverpa armigera属鳞翅目夜蛾科,是一种典型的世界性农业害虫,危害性极大。自20世纪90年代以来棉铃虫灾害日益严重,我国每年因棉铃虫的损失达数十亿(盛承发等,2001),其防治在很大程度上依赖于化学杀虫剂。其中拟除虫菊酯类农药是最为广泛使用的一类人工合成的具有神经毒性的杀虫剂,具有广谱,低毒,高效等特点。昆虫细胞膜离子通道是多种杀虫剂的作用靶标。拟除虫菊酯的主要作用靶标为电压门控钠离子通道(Bloomquist,1996)。此外,许多研究发现拟除虫菊酯还可以影响电压门控钙通道(Soderlund et al.,2001)、钾通道(Rao and Rao,1997)和细胞内钙离子浓度(Clark and Symington,2007;Cao et al.,2010)等。但随着拟除虫菊酯类杀虫剂大量使用,棉铃虫神经敏感性降低(Ahmad et al.,1989),表皮防御能力和多功能氧化酶代谢反应增强(Ahmad and McCaffery,1991)致其产生了严重的抗药性。抗药性的产生与Na+、K+、Ca2+等电压门控性离子通道的功能密切相关。基于上述情况,新型杀虫剂研发及其作用机理的明确成为害虫治理工作的重心。这不仅可以有效防治害虫,同时可以延缓害虫抗药性的形成。本实验利用全细胞膜片钳技术探究戊吡虫胍对棉铃虫中枢神经细胞电压门控Ca2+通道和K+通道门控过程的影响,旨在明确电压门控Ca2+通道和K+通道是否为此类新型农药的潜在作用靶标,进一步探究该新型杀虫剂的作用机理,指导其科学使用,以期对棉铃虫的防治有所贡献。

1 材料与方法

1.1 试虫

棉铃虫初始种群于1992年8月由中国农业科学院植物保护研究所科研人员自河北保定棉田采集,并在室内以人工饲料饲养,不接触任何药剂。

1.2 神经细胞的分离与培养

将预先饥饿处理约24 h的棉铃虫3龄幼虫浸于75%的酒精中消毒3-5 min,用棉铃虫生理溶液清洗2次,然后背面向上小心剖离出腹神经索,置于冰浴的生理溶液中去除神经鞘。将腹神经索置消化酶液(0.15%胶原酶,0.3%胰蛋白酶)中,孵育10 min,然后转移至培养液(TC-100与L-15等体积混合,增补20%胎牛血清,200 mmol∙L–1葡萄糖,1.0 mmol∙L–1谷氨酰胺,0.6 mmol∙L–1谷胱甘肽,80 U/mL庆大霉素,pH6.6)中用内径递减的玻璃管离散细胞,并接种于35 mm培养皿中,(27±1)℃静置培养,细胞2 h后可用于电生理实验(贺秉军等,2001)。

1.3 全细胞膜片钳记录

用高阻封接全细胞膜片钳技术记录Ca2+和K+通道电流(Hamill et al.,1981)。得到全细胞构型之后,置保持电压于﹣120(或﹣80)mV,给予从﹣80 mV到+65(或+60)mV,步幅5(或10)mV,时程300(或60)ms的阶跃去极化刺激。信号由膜片钳放大器Axopatch 200B (Molecular Devices, USA)采集,经5 kHz滤波传输至计算机处理,采样频率设为50 kHz。电信号记录在细胞贴壁2-4 h之内,记录软件为pClamp 10.2(Molecular Devices, USA)。采用Clampex(Molecular Devices, USA)的P/N漏减功能去除漏电流。应用Origin8.5 (OriginLab Corp.,USA)和Clampfit10.2(Molecular Devices,USA)对采集的数据进行处理,使用统计分析软件SPSS20(IBM)对数据进行单因素方差分析,P<0.05表示具有显著性差异。

记录Ca2+电流的细胞外液(mmol∙L–1):NaCl 100,CsCl 4,BaCl2 5,MgCl2·6H2O 2,Hepes 10,葡萄糖5,4-AP 5,TEA-Cl 20,TTX 1 μmol∙L–1,NaOH调至pH6.8。电极内液(mmol∙L–1):CsCl 120,Na2-ATP 5,MgCl2·6H2O 2,EGTA 11,Hepes 5,CsOH调至pH6.8。电极电阻3-5 MΩ。

记录K+电流的细胞外液(mmol∙L–1):NaCl 148,KCl 5,CaCl2 2,MgCl2·6H2O 1,Hepes 10,葡萄糖10,CdCl2 0.5,TTX 1 μmol∙L–1,NaOH调至pH6.8。电极内液(mmol∙L–1):KCl 150,Na2-ATP 0.2,MgCl2·6H2O 2,EGTA 10,Hepes 10,KOH调至pH6.8。电极电阻3-5 MΩ。

杀虫剂:戊吡虫胍(Guadipyr,中国农业大学提供),用二甲基亚砜(Dimethylsulfoxide,DMSO)溶解配成储存液,使用时用细胞外液稀释成所需浓度,稀释液中DMSO的终浓度不超过0.1%。

2 结果与分析

2.1 棉铃虫幼虫中枢神经细胞Ca2+通道的电生理学特性

在全细胞记录模式下,将细胞膜电压钳制在﹣120 mV,给予从﹣80 mV到+65 mV,步幅5 mV,时程300 ms的阶跃去极化刺激,采样频率为50 kHz,记录到的全细胞Ca2+通道电流如图2.1所示,记录到一系列快激活,慢失活的L型ICa

图1

图1   戊吡虫胍作用前后棉铃虫中枢神经细胞Ca2+通道电流

A. 对照;B. 戊吡虫胍(10 μmol∙L–1)作用后的ICa

Fig. 1   ICa of the Helicoverpa armigera before and after the application of Gua

A. Control; B. ICa after Gua (10 μmol∙L–1).


图2

图2   不同浓度戊吡虫胍作用下Ca2+通道的Ⅰ-Ⅴ曲线及Ipeak

A. 戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道Ⅰ-Ⅴ曲线的影响: 电流幅值标准化;B. 戊吡虫胍作用后Ca2+通道Ipeak变化。* 表示对照组相比具有显著性差异(P<0.05,单因素方差分析)。图7同。

Fig. 2   TheⅠ-Ⅴcurves and Ipeak of Ca2+ channels before and after the application of Gua

A. Gua's effects on the Ⅰ-Ⅴ curve of Ca2+ channels: Standardized current amplitude; B. The Ipeak of Ca2+ channels after Gua. * indicats significant difference compared with the control (P<0.05, One-way analysis of variance). The same as Fig.7.


2.2 戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道电流的影响

全细胞膜片钳记录中ICa的“Rundown”现象比较普遍,适当提高电极内液中ATP浓度可以起到一定的缓减作用,但随着记录时间延长,ICa也会有不同程度衰减。全细胞记录模式建立后,先记录对照组数据,后通过灌流系统分别从低到高依次加入不同浓度的Gua后记录电流。结果表明,如图2:A所示,对照组的棉铃虫中枢神经细胞ICa在﹣50-﹣40 mV激活,0-10 mV达峰值。不同浓度Gua加入细胞外液后Ca2+通道Ⅰ-Ⅴ曲线均向负电位方向移动10-20 mV。如图2:B所示,细胞外液中加入不同浓度的Gua后,Ca2+通道的峰值电流(Ipeak)均减小。经单因素方差分析,与对照之间存在显著性统计学差异(P<0.05)。其中对照组Ipeak为(827.66±187.83)pA(n=10),1 μmol∙L–1 Gua作用后Ipeak降为(﹣446.79±147.65)pA(n=5),10 μmol∙L–1 Gua作用后Ipeak降为(﹣508.75±84.21)pA(n=8),100 μmol∙L–1 Gua作用后Ipeak降为(﹣513.44± 69.63)pA(n=5)。随着浓度升高Ca2+通道Ipeak的降低幅度有减小的趋势。这一结果提示Gua不仅对通道电流的激活和峰值电位有影响,同时也能够显著抑制Ca2+通道峰值电流。

2.3 戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道电压依赖性激活的影响

Gua对棉铃虫中枢神经细胞Ca2+通道的激活不具有浓度差异性(图3)。1、10和100 μmol∙L–1的Gua作用于Ca2+通道后,通道的稳定性激活曲线都向超极化方向移动,峰值电位由0变为﹣10 mV,激活电压由﹣30 mV降至﹣60 mV左右。通道的半数激活电压(V0.5)向超极化方向有不同程度的移动,与对照之间相比均具有显著的统计学差异(P<0.05)。其中对照组的V0.5为(﹣9.83±0.73)mV,1 μmol∙L–1作用后V0.5为(﹣22.85±5.02)mV,向超极化方向移动约13 mV。10 μmol∙L–1 Gua作用后V0.5为(﹣23.45±3.36)mV,向超极化方向移动约14 mV。100 μmol∙L–1 Gua作用后V0.5为(﹣24.21±3.74)mV,向超极化方向移动约15 mV。激活曲线的斜率因子(k)均增加,经单因素方差分析k值不具有显著的统计学差异(P>0.05)。由此可以看出100 μmol∙L–1 Guadipyr作用下的Ca2+通道更容易被激活。V0.5k的统计学差异见表1

图3

图3   不同浓度戊吡虫胍对Ca2+通道稳定性激活的影响

Fig. 3   Effects of Gua on the steady-state activation of ICa


表1   戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道稳定性激活的影响

Table 1  Effects of Gua on the steady-state activation of ICa

条件
Condition
激活 Activation
V0.5akbn
对照 Control–9.83±0.734.55±0.3810
1 μmol∙L–1戊吡虫胍
1 μmol∙L–1 Gua
–22.85±5.02*5.27±0.265
10 μmol∙L–1戊吡虫胍
10 μmol∙L–1 Gua
–23.45±3.36*5.48±0.218
100 μmol∙L–1戊吡虫胍
100 μmol∙L–1 Gua
–24.21±3.74*5.46±0.265

a: Half activation voltage; b: Slope factor; n: Number of cells; * indicats significant difference compared with the control (P<0.05, One-way analysis of variance). The same below.

a:半数激活电压;b:斜率因子;n:细胞个数;*表示与对照组相比具有显著性差异(P<0.05,单因素方差分析)。下表同。

新窗口打开| 下载CSV


2.4 戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道稳态失活的影响

Gua对棉铃虫中枢神经细胞Ca2+通道的 稳态失活不具有浓度差异性(图4)。1、10和100 μmol∙L–1作用于Ca2+通道后半数失活电压(V0.5)分别向超极化方向移动4、2和6 mV。失活曲线斜率因子(k)均减小,V0.5k与对照相比均不具有显著性统计学差异(P>0.05)。V0.5k的统计学差异见表2

图4

图4   不同浓度戊吡虫胍对Ca2+通道失活的影响

Fig. 4   Effects of Gua on the steady-state inactivation of ICa


表2   戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道失活的影响

Table 2  Effects of Gua on the steady-state inactivation of ICa

条件
Condition
失活 Inactivation
V0.5akbn
对照 Control–22.30±2.4618.45±3.607
1 μmol∙L–1戊吡虫胍
1 μmol∙L–1 Gua
–26.26±2.8613.58±3.365
10 μmol∙L–1戊吡虫胍
10 μmol∙L–1 Gua
–24.76±2.4412.28±2.956
100 μmol∙L–1戊吡虫胍
100 μmol∙L–1 Gua
–28.69±3.1213.41±3.135

新窗口打开| 下载CSV


2.5 戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道Window current的影响

图5显示的是不同浓度Gua诱发的激活和稳态失活向超极化方向移动对Ca2+通道电流的联合影响。如图5所示,随着Gua浓度的增加Ca2+通道Window current增大幅度逐渐减小。其中对照组的Window current面积大小为6.03,1 μmol∙L–1 Gua作用后面积变为11.65,10 μmol∙L–1 Gua作用后为10.34,100 μmol∙L–1 Gua作用后为8.81。其中1 μmol∙L–1 Gua作用后面积增加幅度最大,为93.20%。说明在一定的膜电位范围内,Gua作用后处于激活状态的Ca2+通道数目增加。揭示了在一定测试电压下,Gua作用下Ca2+通道增加了开放频率。

图5

图5   戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道Window current的影响对比

A. 1 μmol∙L–1戊吡虫胍;B. 10 μmol∙L–1戊吡虫胍;C. 100 μmol∙L–1戊吡虫胍。

Fig. 5   Comparative analysis about the effect of Gua on the Window current of ICa

A. 1 μmol∙L–1 Gua; B. 10 μmol∙L–1 Gua; C. 100 μmol∙L–1 Gua.


2.6 戊吡虫胍对棉铃虫中枢神经细胞K+通道的电生理学特性

在全细胞记录模式下,将细胞膜电压钳制在﹣80 mV,给予从﹣80 mV到+60 mV,步幅10 mV,时程60 ms的阶跃去极化刺激,采样频率为50 kHz,记录到的全细胞K+通道电流如图6所示。

图6

图6   戊吡虫胍作用前后棉铃虫中枢神经细胞K+通道电流

A. 对照;B. 戊吡虫胍(100 μmol∙L–1)作用后的IK

Fig. 6   IK of the Helicoverpa armigera before and after the application of Gua

A. Control; B. IK after Gua (100 μmol∙L–1).


2.7 戊吡虫胍对棉铃虫中枢神经细胞K+通道电流的影响

全细胞记录模式建立后,运行棉铃虫神经细胞K+通道激活刺激方案。先采集对照组数据。后通过灌流系统分别从低到高依次加入不同浓度的Gua,待药物充分作用于细胞后再次运行激活刺激方案并记录数据。结果表明,如图7所示,对照组棉铃虫中枢神经细胞中IK在﹣60-﹣40 mV激活。不同浓度Gua加入细胞外液后IK的IⅠ-Ⅴ曲线向下移动且Ipeak降低。低浓度作用后Ipeak幅值降低较大,随着浓度增大Ipeak降低有减小的趋势。其中对照组Ipeak为(3 534.33±733.58)pA(n=13),10 μmol∙L–1和100 μmol∙L–1 Gua作用后Ipeak分别降为(2 690.35±372.04)pA(n=7)、(3 318.29±604.46)pA(n=4)(图7:B)。经单因素方差分析10 μmol∙L–1 Gua与对照间存在显著统计学差异(P<0.05)。说明低浓度Gua能够有效抑制K+通道峰值电流。

图7

图7   不同浓度戊吡虫胍作用下IK的Ⅰ-Ⅴ曲线及Ipeak

A. 不同浓度戊吡虫胍对棉铃虫中枢神经细胞K+通道I-V曲线的影响:电流幅值未标准化;B. 戊吡虫胍对棉铃虫中枢神经细胞K+通道电流的峰值影响。

Fig. 7   TheⅠ-Ⅴ curves and Ipeak of IK before and after the application of Gua

A. Gua’s effects on the I-V curve of K+ channels: Current amplitude is not standardized; B. The Ipeak of K+ channels after Gua.


2.8 戊吡虫胍对棉铃虫中枢神经细胞K+通道电压依赖性激活的影响

10 μmol∙L–1和100 μmol∙L–1的Gua作用于K+通道后,棉铃虫中枢神经细胞K+通道激活的电压依赖性发生改变,致使激活曲线向去极化方向移动(图8)。半数激活电压(V0.5)呈现不同程度的增加。其中对照组的V0.5为(22.15±1.72)mV,10 μmol∙L–1 Gua作用后V0.5为(31.72±1.07)mV,向去极化方向移动约9 mV,与对照相比具有显著的统计学差异(P<0.05)。100 μmol∙L–1 Gua作用后V0.5为(29.35±1.55)mV,向去极化方向移动约7 mV,与对照相比不具有统计学差异(P> 0.05)。激活曲线的斜率因子(k)均增加,两者之间和两者与对照之间均不具有显著的统计学差异(P>0.05)。由此可以看出Gua作用下的K+通道需在更高的电位下才能激活。V0.5k的统计学差异见表3。

图8

图8   不同浓度戊吡虫胍对K+通道稳定性激活的影响

Fig. 8   Effects of Gua on the steady-state activation of IK


表3   戊吡虫胍对棉铃虫中枢神经细胞K+通道激活的影响

Table 3  Effects of Gua on the steady-state activation of IK

条件
Condition
激活 Activation
V0.5akbn
对照Control22.15±1.7221.10±0.7413
10 μmol∙L–1戊吡虫胍
10 μmol∙L–1 Gua
31.72±1.07*22.31±0.787
100 μmol∙L–1戊吡虫胍
100 μmol∙L–1 Gua
29.35±1.5524.16±1.934

新窗口打开| 下载CSV


3 结论与讨论

现有研究已经证明神经细胞膜上的电压门控Na+通道为拟除虫菊酯类和缩氨基脲类杀虫剂的作用靶标(Bloomquist, 1996)。另外,同样在神经细胞动作电位形成中发挥重要作用的电压门控Ca2+通道(Soderlund et al.,2001)及K+通道(Rao and Rao, 1997)也相继被证明是拟除虫菊酯杀虫剂的重要作用靶标。贺秉军等(2002)发现三氟氯氰菊酯(Cyhalothr)能引起抗性及敏感棉铃虫神经细胞Ca2+通道电流Ⅰ-Ⅴ曲线左移10-20 mV。贺锡文等(1997)报道氟戊菊酯(Fenvalerate)和四钾菊酯(Tramethrin)对电压门控Ca2+通道的影响表现为低剂量激活高剂量抑制,但激活作用较弱,抑制作用明显。Neal等(2010)研究发现丙烯菊酯(Ⅰ型拟除虫菊酯类杀虫剂)致使大鼠PC12细胞L型Ca2+通道的激活和失活发生显著性的改变,引起电压门控Ca2+通道峰值电流、晚电流和尾电流的增加。Von等(2013)揭示氢氟虫腙等缩氨基脲类杀虫剂是通过选择性的结合在钠离子通道上,阻断钠离子通过轴突膜,进而抑制神经冲动,导致害虫死亡。而新烟碱类杀虫剂的主要作用机制不同于拟除虫菊酯和缩氨基脲类这两种杀虫剂,其主要是通过选择性控制昆虫神经系统烟碱型乙酰胆碱酯酶受体,阻断昆虫中枢神经系统的正常传导,从而导致害虫出现麻痹进而死亡(张梅凤等,2009)。Nishimura等(1994)用美洲蜚蠊Periplaneta americana和蝗虫所做的电生理实验揭示吡虫啉及其类似化合物可以增强神经突触后电位。但是目前由于这些农药的不科学使用,棉铃虫神经敏感型降低导致对其产生了严重的抗药性(Ahmad et al.,1989)。因此新型杀虫剂的研发就成为害虫防治的迫切之需。戊吡虫胍是一种从烟碱类和缩氨脲类杀虫剂活性结构拼接而成的系列化合物中筛选出来的新型杀虫剂,兼具新烟碱类和钠离子通道抑制剂的活性特点。有相关文献提到该杀虫剂在大田实验验证发现其对棉铃虫、甜菜夜蛾Spodoptera exigua Hübner等鳞翅目害虫具有良好的防治效果(Qi et al.,2013)。李冬植等(2006)的研究结果表明戊吡虫胍防治蚜虫和褐飞虱效果优于吡虫啉,对其他土壤动物、水生生物、意大利蜜蜂和鸟类日本鹌鹑均低毒。特别是对蜜蜂的毒性远远低于目前市场的新烟碱类杀虫剂。但是目前对于戊吡虫胍这类新型杀虫剂究竟如何影响离子通道,通道门控特性及其功能是如何变化,从而导致害虫致死目前尚未见报道。

本实验通过全细胞膜片钳技术从电压依赖性激活和失活等角度探究了新型杀虫剂戊吡虫胍对棉铃虫中枢神经细胞Ca2+通道门控特性的修饰效应。实验结果表明戊吡虫胍作用后的Ca2+通道激活曲线明显向超极化方向移动,半数激活电压V0.5向负电位方向移动,与对照相比均具有显著性统计学差异。表明戊吡虫胍作用之后,Ca2+通道可以在更负的电位下被激活。此外,戊吡虫胍作用后Ca2+通道的稳态失活曲线均向负电位方向移动。说明戊吡虫胍作用后Ca2+通道在较负的电位下即失活。同时,戊吡虫胍对Ca2+通道激活和稳态失活电压依赖性的影响,使得棉铃虫神经细胞的Ca2+通道窗口电流向负电位方向移动,且区域面积和对照相比均增大。随着浓度的增加,区域面积增加的幅度减小。这显示戊吡虫胍使得Ca2+通道的激活和失活都提前,即在较低的电位下开始激活和失活。表明,在一定的测试电压下,药物作用后处于激活状态的Ca2+通道数目增多,增加了其开放频率。另外,戊吡虫胍有效的抑制了棉铃虫Ca2+通道的峰值电流。但仔细分析发现峰值电流在1 μmol∙L–1 Gua作用后降低幅度最大。当增加药物浓度时,峰值电流呈现增加的趋势。这不仅说明戊吡虫胍对Ca2+通道的作用具有浓度依赖性,也进一步说明当药剂浓度增加时,药剂与全细胞膜上Ca2+通道的结合达到饱和状态,促进Ca2+通道的开放,同时使通道关闭延迟,从而促使峰值电流增加。而Ca2+通道的持续开放势必会增加Ca2+的内流,促进动作电位的形成,同时胞内Ca2+浓度的增加会刺激神经细胞轴突末端囊泡内的兴奋性神经递质的释放,引起神经细胞乃至整个神经系统兴奋性的增加。以上实验结果与溴氢菊酯对Ca2+通道的修饰效应类似(商学良,2014)。这个结果表明棉铃虫中枢神经细胞Ca2+通道是戊吡虫胍的作用靶标之一,为戊吡虫胍的科学使用提供了理论基础。

对于杀虫剂对电压门控K+通道的影响主要集中在拟除虫菊酯类杀虫剂上。刘安西和陈守同(1990)用油间隙和电压钳等方法研究了氯氰菊酯对黑胸大蠊Periplaneta fulginosa神经细胞钠钾通道的调制作用,发现药物可以阻滞迟缓钾通道并降低钾电流的峰值。Salgado(1992)用蔗糖间隙记录法记录蜚蠊神经节突触传递的实验证实RH-5849能够延长兴奋性突触后电位,引起轴突冲动反复发放,实验表明它阻断了慢钾电流,而对快钾通道电流影响甚小。Wang等(2006a)发现三氟氯氰菊酯作用于棉铃虫神经细胞钾离子通道后,瞬时外向钾电流没有明显的变化,而延迟整流钾电流被显著抑制(Wang et al.,2006b)。关于电压门控K+通道是否为新型杀虫剂的作用靶标鲜有报道。

本实验利用全细胞膜片钳技术发现,戊吡虫胍能够改变棉铃虫神经细胞K+通道激活曲线的半数激活电压,使其向去极化方向移动,致使K+通道需在较高电位下才能被激活。同时戊吡虫胍能够有效抑制K+通道的峰值电流。但随着药物浓度的增加,抑制作用减小。这表明高浓度的戊吡虫胍可导致动作电位延长,峰值电流增加。钾通道的电生理特性的改变,会关系到动作电位的发生,从而影响细胞的兴奋性,因此,棉铃虫神经细胞上的钾通道是戊吡虫胍的作用靶标之一。但是由于钾离子通道种类很多,戊吡虫胍具体作用于哪一种钾离子通道还需要进一步的电生理实验验证。

参考文献

Ahmad M, Gladwell RT, McCaffery AR , 1989.

Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand

Pesticide Biochemistry and Physiology, 35(2):165-171.

[本文引用: 2]

Ahmad M, McCaffery AR , 1991.

Elucidation of detoxication mechansims involved in resistance to insecticides in the third instar larvae of field-selected strain of Helicoverpa armigera with the use of synergists

Pesticide Biochemistry and Physiology, 41(1):41-52.

[本文引用: 1]

Bloomquist JR , 1996.

Ion channels as targets for insecticides

Annual Review of Entomology, 41:163-190.

DOI:10.1146/annurev.en.41.010196.001115      URL     PMID:8546445      [本文引用: 2]

Ion channels are the primary target sites for several classes of natural and synthetic insecticidal compounds. The voltage-sensitive sodium channel is the major target site for DDT and pyrethroids, the veratrum alkaloids, and N-alkylamides. Recently, neurotoxic proteins from arthropod venoms, some of which specifically attack insect sodium channels, have been engineered into baculoviruses to act as biopesticides. The synthetic pyrazolines also primarily affect the sodium channel, although some members of this group target neuronal calcium channels as well. The ryanoids have also found use as insecticides, and these materials induce muscle contracture by irreversible activation of the calcium-release channel of the sarcoplasmic reticulum. The arylheterocycles (e.g. endosulfan and fipronil) are potent convulsants and insecticides that block the GABA-gated chloride channel. In contrast, the avermectins activate both ligand- and voltage-gated chloride channels, which leads to paralysis. At field-use rates, a neurotoxic effect of the ecdysteroid agonist RH-5849 is observed that involves blockage of both muscle and neuronal potassium channels. The future use of ion channels as targets for chemical and genetically engineered insecticides is also discussed.

Cao Z, Shafer TJ, Murray TF , 2010.

Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons

Journal of Pharmacology and Experimental Therapeutics, 336(1):197-205.

DOI:10.1124/jpet.110.171850      URL     PMID:20881019      [本文引用: 1]

Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca(2+) influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, lambda-cyhalothrin, beta-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca(2+)](i)) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca(2+)](i). These pyrethroids displayed a range of efficacies on Ca(2+) influx; however, the EC(50) values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca(2+)](i) caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca(2+) influx include N-methyl-D-aspartic acid receptors, L-type Ca(2+) channels, and reverse mode of operation of the Na(+)/Ca(2+) exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca(2+) influx. These data demonstrate that pyrethroids stimulate Ca(2+) entry into neurons subsequent to their actions on VGSCs.

Clark JM, Symington SB , 2007.

Pyrethroid action on calcium channels: Neurotoxicological implications

Invertebrate Neuroscience, 7(1):3-6.

URL     PMID:17294162      [本文引用: 1]

Hamill OF, Marty A, Neher E, Sakmann B, Sigworth FJ , 1981.

Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches

Pflugers Archiv European Journal of Physiology, 391(2):85-100.

URL     PMID:6270629      [本文引用: 1]

He BJ, Chen JT, Guo SY, Rui HH, Meng XQ, Wang XL, Wang YN, Sun JS, Liu AX , 2001.

Nerve cell culture and ultrastrucal analysis of central nerve genglia from resistant Helicoverpa armigera

Acta Scientiarum Naturalium Universitatis Nankaiensis, 34(1):30-36.

[本文引用: 1]

[ 贺秉军, 陈家童, 郭世宜, 芮黄辉, 孟香清, 王秀玲, 王亦农, 孙金生, 刘安西 , 2001.

抗性棉铃虫神经细胞的离体培养和超微结构分析

南开大学学报, 34(1):30-36.]

[本文引用: 1]

He BJ, Liu AX, Chen JT, Sun JS, Rui CH , 2002.

Study on the mechanism of action of cyhalothrin on sodium and calcium channels of nerve cells from Helicoverpa armigera

Acta Biophysica Sinica, 18(2):201-205.

[本文引用: 1]

[ 贺秉军, 刘安西, 陈家童, 孙金生, 芮昌辉 , 2002.

三氟氯氰菊酯对棉铃虫神经细胞钠及钙通道作用机理研究

生物物理学报, 18(2):201-205.]

[本文引用: 1]

He XW, Yin RY, Chen YH, LV J, Xie ZP, He FS , 1997.

Effect of pyrethroids on Na+、Ca2+ channel currents in rat brain neurons

Chinese Journal of Industrial Hygiene and Occupational Diseases, 15(5):261-264.

[本文引用: 1]

[ 贺锡文, 殷若元, 陈寅红, 吕京, 谢佐平, 何凤生 , 1997.

拟除虫菊酯对神经细胞膜Na+、Ca2+离子通道的影响

中华劳动卫生职业病杂志, 15(5):261-264.]

[本文引用: 1]

Li DZ, Wang K, Xu L, Chai TT, Cui F, Qiu LH, Zheng MQ, Qin ZH, Wang CJ , 2006.

Acute toxicity of guadipyr to non-target organisms

Asian Journal of Ecotoxicology, 11(3):331-337.

[本文引用: 1]

[ 李冬植, 王凯, 徐莉, 柴婷婷, 崔峰, 邱立红, 郑明奇, 覃兆海, 王成菊 , 2006.

戊吡虫胍对几种非靶标生物的急性毒性

生态毒理学报, 11(3):331-337.]

[本文引用: 1]

Liu AX, Chen ST , 1990.

Modified action of cypermethrin enantiomers on axonal sodium and potassium channels of Periplaneta Fulginosa(Serville)

Acta Entomologica Sinica, 33(1):1-6.

[本文引用: 1]

[ 刘安西, 陈守同 , 1990.

氯氰菊酯异构体对黑胸大蠊神经钠钾通道的调制作用

昆虫学报, 33(1):1-6.]

[本文引用: 1]

Neal AP, Yuan Y, Atchison WD , 2010.

Allethrin differentially modulates voltage-gated calcium channel subtypes in rat PC12 cells

Toxicological Sciences, 116(2):604-613.

DOI:10.1093/toxsci/kfq139      URL     PMID:20466778      [本文引用: 1]

Pyrethroid insecticides are one of the most widely used classes of insecticides. Previous studies revealed that pyrethroids potently affect the insect voltage-gated sodium (Na(+)) channel (VGSC), resulting in prolonged channel open time. However, recent findings have suggested that pyrethroids may affect targets other than the VGSC. In particular, several studies have shown that pyrethroids can modulate the activity of voltage-gated calcium (Ca(2+)) channels (VGCCs). However, these studies often reported conflicting results; some studies observed stimulatory effects, whereas others observed inhibitory effects of pyrethroids on VGCCs. This study investigated whether allethrin (AL), a well-characterized type I pyrethroid, altered VGCC characteristics measured by whole-cell recording in rat pheochromocytoma cells (PC12) differentiated with nerve growth factor (NGF). AL (5 microM) increased peak, end, and tail composite VGCC current independent of its effects on VGSCs. After blocking VGCC subtype-specific current with omega-conotoxin GVIA (GVIA, an N-type VGCC antagonist) or nimodipine (NIM, an L-type VGCC antagonist), our data further suggest that AL differentially affects VGCC subtypes. Thus, AL apparently stimulated GVIA-insensitive current while inhibiting NIM-insensitive current. AL also significantly altered the voltage dependency of activation and inactivation of L-type VGCCs. The differential modulation of VGCC subtypes by AL may explain some of the conflicting observations of other studies.

Nishimura K, Kanda Y, Okazawa A, Ueno T , 1994.

Relationship between insecticidal and neyrophysiological activities of imidacloprid and related compounds

Pesticide Biochemistry and Physiology, 50(1):51-59.

DOI:10.1006/pest.1994.1057      URL     [本文引用: 1]

Qi SZ, Wang C, Chen XF, Qin ZH, Li XF, Wang CJ , 2013.

Toxicity assessments with Daphnia magna of Guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione-S-transferase (GST), catalase (CAT) and chitobiase activities

Ecotoxicology and Environmental Safety, doi.org/ 10.1016/j.ecoenv.2013.09.013.

URL     PMID:32858326      [本文引用: 2]

The phytogenic algicide sanguinarine shows strong inhibitory effects on some bloom-forming cyanobacteria and exhibits great potential in cyanobacterial bloom mitigation. To evaluate the possible ecological effects of sanguinarine on microalgae, the effects and possible mechanisms of sanguinarine on the competition between bloom-forming cyanobacterium Raphidiopsis raciborskii (formerly named Cylindrospermopsis raciborskii) and green alga Scenedesmus obliquus were investigated through co-culture competition test and comparative toxicological study including growth characteristics, chlorophyll fluorescence transients, activities of antioxidant enzymes, and lipid peroxidation. The results of Raphidiopsis-Scenedesmus co-culture competition test showed that sanguinarine decreased the competition ability of R. raciborskii, which benefitted S. obliquus in winning the competition. Toxicological studies have shown that sanguinarine exhibited high inhibitory effects on the growth and photosynthesis of R. raciborskii but no obvious toxicity on S. obliquus at concentrations of no more than 80 mug L(-1). Oxidative damage partially contributed but was not the primary mechanism for the toxicity of sanguinarine on R. raciborskii. The results presented in this study indicate that sanguinarine may be a good algicidal candidate in mitigation of Raphidiopsis-based water bloom.

Rao GV, Rao KS , 1997.

Modulation of K+ transport across synaptosomes of rat brain by synthetic pyrethroids

Journal of the Neurological Sciences, 147(2):127-133.

DOI:10.1016/s0022-510x(96)05327-0      URL     PMID:9106117      [本文引用: 2]

Potassium transport across synaptosomes was studied under the influence of two synthetic pyrethroids, (Permethrin, without the cyano group) and Cypermethrin (CPM, with the cyano group). Synaptosomes were isolated from rat brain cerebral cortex and incubated with 40 microM of PM and CPM for 15 min at 37 degrees C. K+ release was monitored by a K(+)-sensitive electrode. CPM caused more K+ release from synaptosomes compared to PM. K+ transport is regulated by Na(+)-K(+)-ATPase, K(+)-ATPase and K+ channels. To understand the mode of action, synaptosomes were preincubated with 9.5 x 10(-3) M ouabain (inhibitor of Na(+)-K(+)-ATPase), 1.7 x 10(-2) M N-ethylmaleamide (K(+)-ATPase inhibitor), and 9.5 x 10(-5) M quinine sulfate (K(+)-channel blocker) for 15 min at 37 degrees C. In the presence of ouabain and N-ethylmaleamide, PM- and CPM-induced K+ release was decreased and in the presence of quinine sulfate, there was no release of K+. Furthermore, the studies indicated that PM and CPM significantly decreased K+ uptake.

Salgado VL , 1992.

The neurotoxic insecticidal mechanism of the nonsterodial ecdysone agonist RH-5849: K+ channel block in nerve and muscle

Pestic Biochem. Physiol., 43(1):1-13.

DOI:10.1016/0048-3575(92)90013-P      URL     [本文引用: 1]

Shang XL , 2014.

Effects of tefluthrin and deltamethrin on calcium channels and BK channels in central neurons isolated from Helicoverpa armigera.

Master dissertation. Tianjin: Nankai University.

[本文引用: 1]

[ 商学良 , 2014.

七氟菊酯和溴氰菊酯对棉铃虫神经细胞Ca 2+通道及Ca 2+激活K +通道(BK)作用机理的研究

硕士学位论文. 天津: 南开大学.]

[本文引用: 1]

Sheng CF, Xuan WJ, Su JW, Wang HT , 2001.

A protracted disaster of cotton bollworm in China and the role of sex pheromone in the disaster reduction

Journal of Natural Disasters, 10(1):75-79.

[本文引用: 1]

[ 盛承发, 宣维健, 苏建伟, 王红托 , 2001.

棉铃虫灾害的长期性及性信息素的减灾控害作用

自然灾害学报, 10(1):75-79.]

[本文引用: 1]

Soderlund DM, Clark JM, Sheets L P, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML , 2001.

Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment

Toxicology, 171(1):3-59.

DOI:10.1016/s0300-483x(01)00569-8      URL     PMID:11812616      [本文引用: 2]

The Food Quality Protection Act (FQPA) of 1996 requires the United States Environmental Protection Agency to consider the cumulative effects of exposure to pesticides having a 'common mechanism of toxicity.' This paper reviews the information available on the acute neurotoxicity and mechanisms of toxic action of pyrethroid insecticides in mammals from the perspective of the 'common mechanism' statute of the FQPA. The principal effects of pyrethroids as a class are various signs of excitatory neurotoxicity. Historically, pyrethroids were grouped into two subclasses (Types I and II) based on chemical structure and the production of either the T (tremor) or CS (choreoathetosis with salivation) intoxication syndrome following intravenous or intracerebral administration to rodents. Although this classification system is widely employed, it has several shortcomings for the identification of common toxic effects. In particular, it does not reflect the diversity of intoxication signs found following oral administration of various pyrethroids. Pyrethroids act in vitro on a variety of putative biochemical and physiological target sites, four of which merit consideration as sites of toxic action. Voltage-sensitive sodium channels, the sites of insecticidal action, are also important target sites in mammals. Unlike insects, mammals have multiple sodium channel isoforms that vary in their biophysical and pharmacological properties, including their differential sensitivity to pyrethroids. Pyrethroids also act on some isoforms of voltage-sensitive calcium and chloride channels, and these effects may contribute to the toxicity of some compounds. Effects on peripheral-type benzodiazepine receptors are unlikely to be a principal cause of pyrethroid intoxication but may contribute to or enhance convulsions caused by actions at other target sites. In contrast, other putative target sites that have been identified in vitro do not appear to play a major role in pyrethroid intoxication. The diverse toxic actions and pharmacological effects of pyrethroids suggest that simple additivity models based on combined actions at a single target are not appropriate to assess the risks of cumulative exposure to multiple pyrethroids.

Su W, Zhou Y, Ma Y, Wang L, Zhang Z, Rui C, Duan H, Qin Z , 2012.

N'-Nitro-2-hydrocarbyliden-ehydrazinecarboximidamides: Design, synthesis, crystal structure, insecticidal activity, and structure- activity relationships

Journal of Agricultural & Food Chemistry, 60(20):5028-5034.

DOI:10.1021/jf300616x      URL     PMID:22546079      [本文引用: 1]

A novel series of acyclic imine-substituted nitenpyram analogues were designed and synthesized from nitroaminoguanidine, and their structures were confirmed using X-ray diffraction crystallography. Preliminary bioassays showed that the target molecules exhibited good activities against aphids in laboratory (Myzus persicae Sulzer) and field trials (M. persicae Sulzer and Brevicoryne brassicae Linnaeus). Comparative molecular field analysis and comparative molecular similarity indices analysis were employed to develop a three-dimensional quantitative structure-activity relationship model that describes the insecticidal activity of 21 neonicotinoid derivatives. Simple synthesis, low cost, and good insecticidal activity have made this series of compounds become very promising candidates for future commercial pesticides.

Von Stein RT, Silver KS, Soderlund DM , 2013.

Indoxacarb, metaflumizone, and other sodium channel inhibitor insecticides: Mechanism and site of action on mammalian voltage-gated sodium channels

Pesticide Biochemistry and Physiology, 106(3):101-112.

DOI:10.1016/j.pestbp.2013.03.004      URL     PMID:24072940      [本文引用: 1]

Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the

Wang Y, He BJ, Zhao Q, Liang Z, Liu AX , 2006a.

Effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera

Insect Science, 13(1):13-17.

DOI:10.1111/ins.2006.13.issue-1      URL     [本文引用: 1]

Wang Y, He BJ, Wu CL, Liu AX , 2006b.

Inhibition effects of cyhaliothrin on the delayed rectifier potassium current in the central neurons of Helicoverpa armigera

Acta Entomologica Sinica, 49(2):235-240.

URL     [本文引用: 1]

The effects of cyhalothrin on the delayed rectifier potassium current in the central neurons of Helicoverpa armigera were studied using the patch clamp technique for the first time. The results showed that before application of cyhalothrin, 81% and 39% cells were activated at -30 mV and -40 mV (n=21), respectively. In 15 min after cyhalothrin (10-5 mmol/L) application, 63% and 38% cells were activated at -40 mV and -50 mV (n=8), respectively. The amplitude of the current decreased significantly after application of cyhalothrin and the inhibition percentage reached 37.7% in 1 min (n=19). After the application, activation curve shifted to the negative direction and the value of Vh changed significantly, but the k value did not change remarkably. In conclusion, the results suggest that under the action of cyhalothrin, the potassium channels can be activated more easily and current amplitude can be inhibited significantly, this is related to the nervous insensitivity,and potassium channels of Helicoverpa armigera central neurons are the action targets of pyrethroid insecticides.]]>

Zhang MF, Fan JY, Zhang HW, Zhang XZ, Ma XG , 2009.

Research development of studies on neonicotinoid insecticides

World Pesticides, 31(1):34-37, 64.

[本文引用: 1]

[ 张梅凤, 范金勇, 张宏伟, 张秀珍, 马新刚 , 2009.

新烟碱类杀虫剂的研究进展

世界农药, 31(1):34-37, 64.]

[本文引用: 1]

/