苗期水稻响应褐飞虱取食的基因差异表达分析 *

应用昆虫学报, 2020, 57(4): 911-920 doi: 10.7679/j.issn.2095-1353.2020.093

研究论文

苗期水稻响应褐飞虱取食的基因差异表达分析 *

曹征鸿,1,**, 贺康1, 徐乐1, 汤沈杨1, 王亚琴2,3, 李飞,1,***

1. 浙江大学昆虫科学研究所,杭州 310058

2. 水稻生物学国家重点实验室,杭州 310058

3. 浙江大学生物技术研究所,杭州 310058

Change in the gene expression of seedling stage rice in response to feeding by the brown planthopper Nilaparvata lugens (Stål)(Hemiptera: Delphacidae)

CAO Zheng-Hong,1,**, HE Kang1, XU Le1, TANG Shen-Yang1, WANG Ya-Qin2,3, LI Fei,1,***

1. Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China

2. State Key Laboratory of Rice Biology, Hangzhou 310058, China

3. Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China

通讯作者: *** E-mail:lifei18@zju.edu.cn

**第一作者First author,E-mail: 3130100574@zju.edu.cn

收稿日期: 2020-05-6   接受日期: 2020-06-4   网络出版日期: 2020-07-27

基金资助: *国家自然科学基金项目.  31972354
国家自然科学基金项目.  31701785

Corresponding authors: *** E-mail:lifei18@zju.edu.cn

Received: 2020-05-6   Accepted: 2020-06-4   Online: 2020-07-27

摘要

【目的】 褐飞虱Nilaparvata lugens (Stål) 是水稻的重要害虫之一,主要刺吸水稻韧皮部汁液为害,对水稻生产造成严重的产量和经济损失。为研究水稻响应褐飞虱取食的分子机制,对褐飞虱取食6 h后的苗期水稻进行转录组测序及基因差异表达分析。【方法】 采用illumina二代测序技术获得褐飞虱取食前后水稻组织的转录组数据,利用RSEM软件进行基因表达定量和DEseq2进行差异表达分析;从差异表达基因中随机选取20个基因采用荧光定量PCR技术进行验证;采用GeneMerge软件对差异表达基因进行KEGG和GO富集分析。【结果】 褐飞虱取食后,水稻转录组中的1 104个基因出现了差异表达,其中435个基因表达上调,669个基因表达下调。荧光定量PCR结果显示,20个差异表达基因中18个基因的表达变化趋势和测序结果一致,证明了转录组分析结果可靠。GO和KEGG富集分析表明,表达上调基因主要与水稻氧化应激、海藻糖合成及次生化合物代谢有关,显著富集在14个KEGG通路和30个GO功能分类中;而表达下调基因主要参与水稻纤维素、蛋白质及脂肪酸合成过程,显著富集在29个KEGG通路和26个GO功能分类。在差异表达基因中,分别有61个转录因子和13个水杨酸和茉莉酸信号通路相关基因。【结论】 褐飞虱取食激发了水稻的应激反应和保护机制,同时还降低了营养合成的过程,是飞虱为害造成水稻减产的原因之一。本研究初步揭示了苗期水稻响应褐飞虱取食的差异表达基因,为研究水稻-褐飞虱互作机制以及褐飞虱抗性水稻品种培育提供了参考和依据。

关键词: 水稻 ; 飞虱 ; 转录组 ; 分子响应

Abstract

[Objectives] To investigate the molecular mechanisms used by plants in response to attack by the brown planthopper BPH; [Nilaparvata lugens (Stål)], a piercing-sucking insect that is now one of the most globally important rice pests. [Methods] Transcriptome data of seedling stage rice, with, or without, BPH were obtained using Illumina next-generation sequencing technology. Gene expression levels were obtained using RSEM software and DEseq2 used to analyze differential gene expression. Twenty differentially expressed genes were randomly selected for verification with fluorescent quantitative real-time PCR (qPCR) and GeneMerge software was used to analyze KEGG and GO enrichment of differentially expressed genes. [Results] A total of 1 104 differentially expressed genes were identified in rice plants infested by BPH, of which 435 were up-regulated and 669 were down-regulated. Twenty differentially expressed genes were selected for validation with qPCR, among which 18 were consistent with RNA-Seq estimation thereby confirming the reliability of transcriptome analysis. GO and KEGG enrichment analysis show that the up-regulated genes were enriched into 14 KEGG pathways and 30 GO terms, that are mainly involved in oxidative stress, trehalose synthesis and secondary metabolism, whereas the down-regulated genes were enriched into 29 KEGG pathways and 26 GO terms that are mainly involved in the synthesis of cellulose, protein and fatty acids. In addition, 61 transcription factors and 13 genes related to the salicylic acid and jasmonic acid pathways were enriched in the differentially expressed genes. [Conclusion] Feeding by the BPH stimulates the stress and defense responses of rice plants, and also reduces nutrient synthesis, which suggests a possible impact of BPH on rice yield. These results reveal changes in gene expression in rice plants in response to feeding by BPH, the possible impact of BPH on rice yield, and also provide theorical support for developing rice cultivars resistant to BPH.

Keywords: rice ; Nilaparvata lugens ; rranscriptome analysis ; molecular response

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

曹征鸿, 贺康, 徐乐, 汤沈杨, 王亚琴, 李飞. 苗期水稻响应褐飞虱取食的基因差异表达分析 *. 应用昆虫学报[J], 2020, 57(4): 911-920 doi:10.7679/j.issn.2095-1353.2020.093

CAO Zheng-Hong, HE Kang, XU Le, TANG Shen-Yang, WANG Ya-Qin, LI Fei. Change in the gene expression of seedling stage rice in response to feeding by the brown planthopper Nilaparvata lugens (Stål)(Hemiptera: Delphacidae). Chinese Journal of Applied Entomology[J], 2020, 57(4): 911-920 doi:10.7679/j.issn.2095-1353.2020.093

水稻是我国主要粮食作物之一。据国家统计局数据,2018年全国水稻耕种面积约3 020 万hm2,占我国总耕地面积的25.8%。长期以来,水稻生产受害虫为害严重,引起了水稻减产和经济损失。其中,褐飞虱是我国和东南亚水稻种植区的主要害虫,通过刺吸水稻取食汁液、产卵破坏水稻组织为害,受害水稻轻则生长发育受损、产量下降,重则稻株死亡形成“火烧苗”(刁跃珲等,2019)。褐飞虱的防治对水稻生产至关重要,研究水稻对褐飞虱取食的分子响应机制对防治褐飞虱如培育褐飞虱抗性水稻品种具有重要的指导意义。

植物对害虫取食的分子响应机制主要涉及钙离子信号、丝裂原活化蛋白激酶、氧化应激、植物激素和次生代谢等通路(Vivek et al.,2016)。目前,在水稻中鉴定得到31个褐飞虱抗性位点,但是只有13个褐飞虱抗性位点的分子功能得到解析,这13个褐飞虱抗性位点编码的蛋白及其分子功能多种多样,如BPH14编码的是螺旋线圈、核苷酸结合、亮氨酸富集(Coiled-coil,nucleotide-binding,and leucine-rich repeat,CC-NB-LRR)蛋白,而BPH15基因编码的是凝集素受体激酶(Lectin-like receptor kinases,LecRK)(Jing et al.,2017)。此外,植物激素水杨酸(Salicylic acid,SA)途径和茉莉酸(Jasmonic acid,JA)途径也参与了水稻对褐飞虱的防御反应(Guo et al.,2014;Lu et al.,2018)。水稻的多个转录因子如WRKY和bHLH类转录因子能通过激活防御相关信号通路响应褐飞虱取食(Yang et al.,2019)。有些抗性位点已经应用于抗性水稻的育种中,但由于褐飞虱种群密度大,具有遗传多样性,帮助其快速适应进化以抵抗水稻的防御机制。因此,需要更多更有效的褐飞虱抗性相关基因被发掘,以辅助抗性水稻育种(Hu et al.,2016)。

随着转录组测序技术的迅速发展,可以高通量地检测组织中所有基因的表达情况。本研究利用转录组学分析比较了水稻茎杆在褐飞虱取食前后的转录组变化,以期解析褐飞虱取食对水稻基因表达的影响,以及水稻响应褐飞虱取食的免疫防御分子机制,从而挖掘水稻防御褐飞虱的关键基因,为防治褐飞虱提供基因资源。

1 材料与方法

1.1 供试昆虫与植物

供试褐飞虱采集于湖北省武汉田间,在人工气候室饲养多代。供试水稻品种为Taichuang Native 1(TN1),在温室培育。温室条件:温度(26±2) ℃,光暗比16 L:8 D,湿度75%±5%。

1.2 样品准备

褐飞虱取食处理组(BFR)和对照组(CK)各取10株3叶期水稻苗,处理组加入300头4龄褐飞虱若虫,对照组不做任何处理,各设置3组生物重复。将处理组和对照组水稻置于人工气候室中培育,待褐飞虱取食6 h后,取出水稻,剪取苗期水稻的褐飞虱取食部位组织(2 cm)作为转录组测序样品,共计6个。

1.3 RNA提取及转录组测序

采用Trizol法提取水稻样品总RNA,经电泳检测合格后用于cDNA文库构建,采用Illumina二代测序平台完成转录组测序。建库和测序均由安诺优达基因科技公司(北京)完成。

1.4 基因差异表达分析

经过数据质量评估后去接头、过滤冗余序列等得到高质量的clean data,以蜀恢498籼稻基因组R498-IGDBv3(Du et al.,2017)作为参考基因组,采用软件RSEM(Li and Colin,2011)进行转录组定量分析,得到转录组各基因的表达量。采用R语言包DEseq2(Michael et al.,2013)对转录组表达量数据进行差异表达分析,筛选褐飞虱取食后水稻的差异表达基因,差异表达标准设置为差异倍数大于2且经过FDR校正的P值(Adjusted P-value,padj)小于0.05。

1.5 实时荧光定量PCR验证

采用Trizol法提取褐飞虱取食前后的水稻样品总RNA,采用HIScript®Ⅲ RT SuperMix for qPCR(Vazyme)反转录试剂盒合成cDNA模板。随机选取20个差异表达基因,使用Primer6设计特异性引物,选取水稻Ubiquitin 5(UBQ5)基因作为内参基因(李冉等,2013)。采用ChamQTM SYBR® qPCR Master(Vazyme)试剂盒进行荧光定量PCR,反应体系及操作步骤均按照试剂盒进行,在QuantStudio 3(Applied Biosystems)定量PCR仪上完成反应。采用比较阈值法,用2–△△Ct法计算相对表达量,差异显著性分析采用Student’s T-test方法检验(纪冬和辛绍杰,2019)。

1.6 KEGG和GO通路富集分析

采用软件GeneMerge1.4(Castillo-Davis and Hartl,2003)对差异表达基因进行KEGG和GO富集分析,根据P-value < 0.05,筛选得到差异表达基因显著性富集的功能通路。

表1   定量PCR所用引物

Table 1  qPCR primers

基因ID Gene ID上游引物Forward primer (5ʹ-3ʹ)下游引物Reverse primer (5ʹ-3ʹ)
Ubiquitin 5 (UBQ5)AACCACTTCGACCGCCACTGTTCGATTTCCTCCTCCTTCC
OsR498G0100081600CGACACCATGATCCGTCTCCCCACTTCCACGGCCTCTTCG
OsR498G0100081800ACCATCCTGCTCTTCCTCCTCGGGCGGGTTCATCTTGTTGC
OsR498G0102334700GAACGCAAGAATCCGCTCCCTCCCAGCTTGTGCAGTCCC
OsR498G0203907000CGTCATGTGGGAGATGGAGCAGCTGGTGTTGGTGGTGGTGGC
OsR498G0306783600AAACAACCATCCCGCTGCTATCATCCTTCCTCCGCCTC
OsR498G0408187800CATTGCCTCCGTTTCCTCTTTCCAGCAGCAGCGATT
OsR498G0408202600ATGTCGGCGAGGATGAACCCCTAAGCAAGCGAAACC
OsR498G0408737000ACCGGCGACGACAGGGACAACCAGTAGGGAGGCCAGTAGCAC
OsR498G1018988800AGCGATACTGTGATTCGGTCAATGGCGGATGAGGATTTGG
OsR498G1019021500ATGGCTGACGCAGAGGACCCCAACCATAACGCCTGT
OsR498G1019092700GGTGATGTCCAGCCTCGGGTTCGTTGGCGATGGCGAAGACG
OsR498G1120631700CACCATCAATCCATTCCTCCATCTCGCCATCCTGAACTGC
OsR498G1120633300GCACTTCTTCATGCACGACACGGACCACCGACAGCTCCCTCA
OsR498G1221501200GGAAAGTGCTGCTCGGATGAATGCCCTTGCTGTTGTGG
OsR498G0100558200GCGGAGGCGAGGAACATCAAGCATGGCTTCTTGGCCTGCTTGT
OsR498G0100612200TCAGCCGCCTCTTCTCCAGCAACACCGCATCCCTCA
OsR498G0101116900GGGAGGAGTGGCGTGCTGAAGGAAGGGACGAGGTTTACG
OsR498G0101439000TGATGATGATGGTTACGCAGACCACGGTGATAGCACAAACTCTT
OsR498G0203527800CACCGTCAACGTCACCACCGTCTGCGGCTTCCCGTGCTTC
OsR498G0203880500AACGGCTTCGGTTTACGCCAACTCCAAAGCGAAATGTAA

新窗口打开| 下载CSV


2 结果与分析

2.1 转录组数据分析

6个样品转录组测序得到的原始数据经过滤,分别得到60 034 869、58 905 381、57 745 824、53 269 890、56 389 786和63 845 983条读长,其Q30碱基比率分别为96.15%、96.06%、96.05%、96.31%、95.94%和96.02%,均大于95%,低质量读长比率均在1%以下。将6个样品过滤得到的高质量测序数据和水稻参考基因比对,比对率分别为93.6%、92.8%、93.4%、93.4%、92.4%和92.1%,比对率均在90%以上(表2)。上述结果表明6个样品的转录组测序数据质量高,可靠性好,和水稻参考基因组匹配程度高,可以用于进一步的转录组分析。

表2   转录组测序数据质量评估

Table 2  Transcriptome sequencing data quality assessment

样品名称
Sample ID
Q30碱基比率
Q30 base ratio
低质量读长比率
Low quality read ratio
高质量reads
High quality reads
参考基因组比对率
Reference genome alignment rate (%)
CK196.150.8160 034 86993.6
CK296.060.8658 905 38192.8
CK396.050.7757 745 82492.6
BFR196.310.6253 269 89093.4
BFR295.940.8556 389 78692.4
BFR396.020.7563 845 98392.1

CK1, CK2 and CK3 are rice samples of control; BFR1, BFR2 and BFR3 are rice samples after feeding by brown planthopper for 6 h.

CK1、CK2、CK3为对照组水稻样品;BFR1、BFR2、BFR3为褐飞虱取食6 h后水稻样品。

新窗口打开| 下载CSV


采用RSEM软件对6个样品的转录组数据进行基因表达定量,得到38 339个基因在6个样品中的表达水平。以未取食的水稻转录组为对照,利用DEseq2软件对褐飞虱取食后水稻基因表达进行差异分析,共筛选得到1 104个差异表达基因,其中包括435个表达上调基因和669个表达下调基因(图1)。

图1

图1   差异表达基因火山图

Padj:校正后的P值。

Fig. 1   Volcano map of differential expressed genes

Padj: Adjusted P-value.


2.2 差异表达基因的定量PCR验证

为验证转录组测序结果的可靠性,从1 104差异表达基因中随机选取20个差异表基因进行验证,其中包括8个表达上调基因,12个表达下调基因。定量PCR结果显示,8个表达上调基因在褐飞虱取食后的水稻中表达量升高,其中4个基因的表达具有显著差异;12个表达下调基因中10个基因在被褐飞虱取食后的水稻中表达量降低,其中3个基因的表达具有显著差异。因此,在选取的20个基因中有18个基因的表达变化趋势和转录组测序结果一致,一致率达到90%,说明转录组分析结果可靠(图2)。

图2

图2   褐飞虱取食诱导的苗期水稻差异表达基因的荧光定量PCR验证

BFR:褐飞虱取食后水稻;CK:对照组水稻。统计分析采用Student’s T- test,数据值为平均值±标准误,*代表差异显著(P < 0.05),**代表差异极显著(P < 0.01)。

Fig. 2   The quantitative real-time PCR validation of 20 differentially expressed genes in rice seedling tissue induced by BPH feeding

BFR: Rice samples after feeding by brown planthopper; CK: Rice samples in the control without feeding. Student’s T-test is used for statistical analysis, and data are mean ± standard errors (SE). * stands for significant difference (P < 0.05), ** stands for extremely significant difference (P < 0.01).


2.3 差异表达基因的GO和KEGG通路富集 分析

在1 104个差异表达基因中,327个基因在KEGG数据库中有注释,注释率为29.6%,包括104个表达上调基因和223个表达下调基因。524个基因在GO数据库有注释,注释率为47.5%,包括211个表达上调基因和313个表达下调基因。

表达上调基因的KEGG富集分析结果如图3所示。KEGG富集分析得到过氧化物酶、海藻糖-6-磷酸合酶/磷酸酶(TPSP)、转录因子WRKY33、几丁质酶、植物G-box结合因子等基因。表达上调基因的GO富集分析结果如图4所示,GO富集结果包含三部分:生物过程、细胞组分和分子功能。其中生物过程富集到的GO功能分类包括氧化应激响应、海藻糖合成过程、碳代谢过程、应激响应等;细胞组分仅富集到1条GO功能分类:胞外区域;分子功能富集得到的GO功能分类有氧化还原、氧化应激、应激响应、萜烯化合物合成等。上述结果表明,褐飞虱取食后,水稻内氧化应激、海藻糖合成、萜烯化合物合成及一些转录因子相关的基因表达上调,与水稻对褐飞虱取食的免疫防御反应相关。

图3

图3   表达上调基因的KEGG富集分析

Fig. 3   KEGG enrichment analysis for up-regulated genes


图4

图4   表达上调基因的GO富集分析

Fig. 4   GO enrichment analysis for up-regulated genes


表达下调基因的KEGG富集分析结果如图5所示。KEGG富集分析得到纤维素合酶A、Rab-11A蛋白、α微管、C2/C3激酶、UDP-葡萄糖-6脱氢酶等基因。表达下调基因的GO分析结果如图6所示,生物过程部分富集的GO功能分类有氧化还原、小GTP酶介导的信号转导、细胞核质运输、碳水化合物代谢、纤维素合成等;细胞组分富集得到的GO功能分类有激酶复合体、胞内区、核糖体等;分子功能富集得到UDP-葡萄糖-6脱氢酶、水解酶、纤维素合酶等GO功能分类。KEGG和GO富集分析结果显示,表达下调基因主要参与纤维素、蛋白质和脂肪酸等化合物合成反应,以及胞内物质运输、能量代谢等生理过程。

图5

图5   表达下调基因的KEGG富集分析

Fig. 5   KEGG enrichment analysis for down-regulated genes


图6

图6   表达下调基因的GO富集分析

Fig. 6   GO enrichment analysis for down-regulated genes


2.4 差异表达的转录因子

褐飞虱取食后,61个转录因子的表达有显著的变化(T-test,P< 0.05),其中36个转录因子基因表达显著上调,25个转录因子基因表达显著下调。61个差异表达的转录因子主要包含以下几类:MYB、ERF、ARF、NAC、HOX、WRKY、bHLH等(表3)。

表3   褐飞虱取食诱导的苗期水稻中差异表达的转录因子

Table 3  The differentially expressed transcription factors in rice seedling tissue induced by BPH feeding

转录因子类型
Transcription factor type
上调基因数目
Up-regulated gene number
下调基因数目
Down-regulated gene number
MYB54
ERF61
ARF24
NAC41
HOX21
Zc3h22
WRKY60
bHLH04
Bzip11
AHL20
其他Others67
总计Total number3625

MYB is the transcription factor with MYB domain; ERF is the ethylene response factor and contains AP2/ERF domain; ARF is auxin response factor, which contains AUX/IAA domain. NAC is the transcription factor containing NAC domain. HOX is the transcription factor with homologous box DNA-dependent domain. Zc3h is the transcription factor with CCCH zinc finger domain. WRKY is the transcription factor with conserved sequence consisting of 7 amino acids WRKYGQK. bHLH is the transcription factor with helical-ring-helical structure. Bzip is the transcription factor with basic region/leucine zipper motif. AHL is the nuclear localized transcription factor containing AT-HOOK motif.

MYB是含有MYB结构域的一类转录因子;ERF 是乙烯应答因子,含有AP2/ERF结构域;ARF是生长素响应因子,含有AUX/IAA结构域;NAC是含有NAC结构域的一类转录因子;HOX是一类特殊的具有同源盒DNA依赖的结构域的转录因子;Zc3h 是含有CCCH锌指结构域的一类转录因子;WRKY是含有WRKYGQK7个氨基酸组成的保守序列的一类转录因子;bHLH是含有螺旋-环-螺旋结构的一类转录因子;Bzip是具有碱性亮氨酸拉链结构的一类转录因子;AHL是含有AT-hook基序核定位的转录因子。

新窗口打开| 下载CSV


2.5 差异表达的水杨酸和茉莉酸通路相关基因

在褐飞虱取食后的水稻转录组中,共发现13个SA和JA相关基因差异表达,均显著上调(P< 0.05)(表4),包括调控SA合成的转录因子SARD1,调控SA信号下游PR基因的转录因子WRKY33,响应JA信号的下游转录因子JAMYB,以及同时参与SA信号和JA信号调控的WRKY70等;4个直接参与JA合成的基因:脂氧合酶LOX1LOX7和酰基辅酶A氧化酶ACX4;参与负反馈调控JA活性水平的细胞色素P450氧化酶CYP94C1,以及可能参与SA和JA代谢的甲酯酶MES11;响应SA信号的下游基因α-双加氧酶DOX。这13个SA和JA相关基因可能通过SA和JA信号通路参与了水稻对褐飞虱取食的免疫防御反应。

表4   褐飞虱取食诱导的苗期水稻SA和JA相关的差异表达基因

Table 4  The differently expressed genes associated with SA and JA in rice seedling tissue induced by BPH feeding

类型Type基因编号Gene ID基因注释Gene annotation差异倍数 Fold change
SA相关基因
Genes associated with SA
OsR498G0815887900Protein SAR DEFICIENT 13.76
OsR498G0100620200Transcription factor WRKY332.86
OsR498G0511031400Probable WRKY transcription factor 332.85
OsR498G1221518200Alpha-dioxygenase 1(DOX1)2.13
JA相关基因
Genes associated with JA
OsR498G1221890200Transcription factor JAMYB2.88
OsR498G0204402500Transcription factor MYB213.79
OsR498G0100288900Probable WRKY transcription factor 722.19
OsR498G0816439800Lipoxygenase 7, chloroplastic(LOX7)3.39
OsR498G0306871300Lipoxygenase-1(LOX1)4.27
OsR498G0509800400Acyl-coenzyme A oxidase 4, peroxisomal(ACX4)2.14
OsR498G0100209800Acyl-coenzyme A oxidase 4, peroxisomal(ACX4)2.00
OsR498G0510943100Cytochrome P450 94C1(CYP94C1)2.28
SA和JA相关基因
Genes associated with SA and JA
OsR498G1119325200Probable WRKY transcription factor 702.27
OsR498G0203096300WRKY transcription factor WRKY712.46
OsR498G0714720100Putative methylesterase 11, chloroplast(MES11)2.28

新窗口打开| 下载CSV


3 讨论

本研究通过分析褐飞虱取食后苗期水稻转录组变化,筛选得到1 104个褐飞虱取食诱导的水稻差异表达基因,其中表达上调基因435个,表达下调基因669个。通过GO和KEGG功能富集分析,发现表达上调基因主要涉及过氧物酶、转录因子WRKY33、海藻糖合酶、萜烯化合物合成等基因,这些基因大部分和植物胁迫应激和免疫防御有关。研究发现水稻中转录因子WRKY33能够被外源SA诱导并激活SA信号通路下游的PR1基因表达(Koo et al.,2009)。海藻糖历来被认为参与植物胁迫应激,研究发现海藻糖合酶可能和植物活性氧积累有关(Zhang et al.,2016)。此外,在差异表达基因中筛选SA和JA相关基因,发现筛选得到的13个SA和JA相关的差异表达基因均受褐飞虱取食诱导表达上调,说明SA和JA信号参与水稻对褐飞虱取食的分子响应。SA和JA信号广泛参与植物的抗虫反应,相关研究表明水稻中SA和JA信号都会受到褐飞虱取食诱导,但只有SA信号是水稻对褐飞虱的抗性反应所必需的(Guo et al.,2014;Li et al.,2017;Lu et al.,2018;Matthias and Philippe,2019)。而表达下调基因主要参与纤维素、蛋白质、脂肪酸的合成反应,以及胞内物质运输和能量代谢过程。

综上所述,褐飞虱通过刺吸式口器取食水稻韧皮部汁液,诱导了水稻的应激反应和防御反应,导致水稻中大量氧化应激、SA和JA信号、萜烯化合物合成等相关基因的表达上调。在褐飞虱取食过程中,许多转录因子也参与调控SA和JA通路基因等的表达调控。同时,褐飞虱取食严重影响水稻的营养代谢,包括蛋白质、脂肪酸和多糖的合成,尤其是涉及到细胞壁主要成分如纤维素、果胶等的减少,可能是飞虱为害导致水稻减产的原因之一。本研究结果对深入揭示水稻免疫防御反应,培育褐飞虱抗性水稻具有重要的参考价值。

致谢:

感谢水稻生物学国家重点实验室对本研究的资助和支持。

参考文献

Castillo-Davis CI, Hartl DL , 2003.

GeneMerge-post-genomic analysis, data mining, and hypothesis testing

Bioinformatics, 19(7):891-892.

DOI:10.1093/bioinformatics/btg114      URL     PMID:12724301      [本文引用: 1]

SUMMARY: GeneMerge is a web-based and standalone program written in PERL that returns a range of functional and genomic data for a given set of study genes and provides statistical rank scores for over-representation of particular functions or categories in the data set. Functional or categorical data of all kinds can be analyzed with GeneMerge, facilitating regulatory and metabolic pathway analysis, tests of population genetic hypotheses, cross-experiment comparisons, and tests of chromosomal clustering, among others. GeneMerge can perform analyses on a wide variety of genomic data quickly and easily and facilitates both data mining and hypothesis testing. AVAILABILITY: GeneMerge is available free of charge for academic use over the web and for download from: http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge.html.

Diao YH, Sun KD, Zhang YY, Wang XK , 2019.

Research progress on drug resistance of brown planthopper and its control strategies

Agricultural Development and Equipment,(6): 28- 29, 34.

[本文引用: 1]

[ 刁跃珲, 孙凯迪, 张蕴邺, 王兴科 , 2019.

水稻褐飞虱抗药性研究进展及其治理对策

农业开发与装备, (6): 28- 29, 34.]

[本文引用: 1]

Du HL, Yu Y, Ma YF, Gao Q, Cao YH, Chen Z, Ma B, Qi M, Li Y, Zhao XF, Wang J, Liu KF, Qin P, Yang X, Zhu LH, Li SG, Liang CZ , 2017.

Sequencing and de novo assembly of a near complete indica rice genome

Nature Communications, 8:15324.

DOI:10.1038/ncomms15324      URL     PMID:28469237      [本文引用: 1]

A high-quality reference genome is critical for understanding genome structure, genetic variation and evolution of an organism. Here we report the de novo assembly of an indica rice genome Shuhui498 (R498) through the integration of single-molecule sequencing and mapping data, genetic map and fosmid sequence tags. The 390.3 Mb assembly is estimated to cover more than 99% of the R498 genome and is more continuous than the current reference genomes of japonica rice Nipponbare (MSU7) and Arabidopsis thaliana (TAIR10). We annotate high-quality protein-coding genes in R498 and identify genetic variations between R498 and Nipponbare and presence/absence variations by comparing them to 17 draft genomes in cultivated rice and its closest wild relatives. Our results demonstrate how to de novo assemble a highly contiguous and near-complete plant genome through an integrative strategy. The R498 genome will serve as a reference for the discovery of genes and structural variations in rice.

Guo HM, Li HC, Zhou SR, Xue HW, Miao XX , 2014.

Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect

Molecular Plant, 7(11):1683-1692.

DOI:10.1093/mp/ssu098      URL     [本文引用: 2]

Jasmonic acid (JA) positively regulates rice resistance to chewing insects. We here demonstrated that cis-12-oxo-phytodienoic acid (OPDA), the direct precursor of JA, stimulates rice defense response to brown planthopper (BPH), a piercing-sucking insect pest. Overexpression of allene oxide cyclase (AOC) enhances rice defense against chewing and piercing-sucking insects through JA and OPDA, respectively.The brown planthopper (BPH, Nilaparvata lugens) is a destructive, monophagous, piercing-sucking insect pest of rice. Previous studies indicated that jasmonic acid (JA) positively regulates rice defense against chewing insect pests but negatively regulates it against the piercing-sucking insect of BPH. We here demonstrated that overexpression of allene oxide cyclase (AOC) but not OPR3 (cis-12-oxo-phytodienoic acid (OPDA) reductase 3, an enzyme adjacent to AOC in the JA synthetic pathway) significantly increased rice resistance to BPH, mainly by reducing the feeding activity and survival rate. Further analysis revealed that plant response to BPH under AOC overexpression was independent of the JA pathway and that significantly higher OPDA levels stimulated rice resistance to BPH. Microarray analysis identified multiple candidate resistance-related genes under AOC overexpression. OPDA treatment stimulated the resistance of radish seedlings to green peach aphid Myzus persicae, another piercing-sucking insect. These results imply that rice resistance to chewing insects and to sucking insects can be enhanced simultaneously through AOC-mediated increases of JA and OPDA and provide direct evidence of the potential application of OPDA in stimulating plant defense responses to piercing-sucking insect pests in agriculture.

Hu J, Xiao C, He YQ , 2016.

Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice

Rice, 9:30.

DOI:10.1186/s12284-016-0099-0      URL     PMID:27300326      [本文引用: 1]

Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

Ji D, Xin SJ , 2009.

Development and data analysis of real-time fluorescent quantitative PCR

Letters in Biotechnology, 20(4):198-600.

[本文引用: 1]

[ 纪冬, 辛绍杰 , 2009.

实时荧光定量 PCR的发展和数据分析

生物技术通讯, 20(4):598-600.]

[本文引用: 1]

Jing SL, Zhao Y, Du B, Chen RZ, Zhu LL, He GC , 2017.

Genomics of interaction between the brown planthopper and rice

Current Opinion in Insect Science, 19(SI):82-87.

DOI:10.1016/j.cois.2017.03.005      URL     [本文引用: 1]

Koo SC, Moon BC, Kim JK, Kim CY, Sung SJ, Kim MC, Cho MJ, Cheong YH , 2009.

OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33

Biochemical and Biophysical Research Communications, 387(2):365-370.

DOI:10.1016/j.bbrc.2009.07.026      URL     PMID:19607808      [本文引用: 1]

Mitogen-activated protein kinases (MAPKs) play important roles in responses to various environmental stresses. In a previous study, we demonstrated that OsBWMK1, which localizes in the nucleus, mediates PR gene expression by activating the OsEREBP1 transcription factor, and that the constitutive expression of OsBWMK1 also enhances resistance against pathogen infections [Y.H. Cheong, B.C. Moon, J.K. Kim, C.Y. Kim, M.C. Kim, I.H. Kim, C.Y. Park, J.C. Kim, B.O. Park, S.C. Koo, H.W. Yoon, W.S. Chung, C.O. Lim, S.Y. Lee, M.J. Cho, BWMK1, rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor, Plant Physiol. 132 (2003) 1961--1972]. Here, we report that OsBWMK1 phosphorylates OsWRKY33, which binds to the W-box element (TTGACCA) in several PR gene promoters, thereby enhancing DNA-binding activity of the factor to its in vitro cognate binding site. Transient coexpression of OsBWMK1 and OsWRKY33 in Arabidopsis protoplasts elevates SA-dependent expression of the GUS-reporter gene driven by the W-box element and the PR1 promoter. Furthermore, the levels of SA and H(2)O(2) are elevated in 35S-OsBWMK1 transgenic plants that show HR-like cell death. Altogether, OsBWMK1 may mediate SA-dependent defense responses by activating the WRKY transcription factor in plants.

Li B, Colin ND , 2011.

RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome

BMC Bioinformatics, 12(1):1-16.

DOI:10.1186/1471-2105-12-1      URL     [本文引用: 1]

Li CY, Luo C, Zhou ZH, Wang R, Ling F, Xiao LT, Lin YJ, Chen H , 2017.

Gene expression and plant hormone levels in two contrasting rice genotypes responding to brown planthopper infestation

BMC Plant Biology, 17:57.

DOI:10.1186/s12870-017-1005-7      URL     PMID:28245796      [本文引用: 1]

BACKGROUND: The brown planthopper (BPH; Nilaparvata lugens Stal) is a destructive piercing-sucking insect pest of rice. The plant hormones salicylic acid (SA) and jasmonic acid (JA) play important roles in plant-pest interactions. Many isolated rice genes that modulate BPH resistance are involved in the metabolism or signaling pathways of SA, JA and ethylene. 'Rathu Heenati' (RH) is a rice cultivar with a high-level, broad-spectrum resistance to all BPH biotypes. Here, RH was used as the research material, while a BPH-susceptible rice cultivar 'Taichung Native 1' (TN1) was the control. A cDNA microarray analysis illuminated the resistance response at the genome level of RH under BPH infestation. The levels of SA and JA in RH and TN1 seedlings after BPH infestation were also determined. RESULTS: The expression pattern clustering indicated that 1467 differential probe sets may be associated with constitutive resistance and 67 with the BPH infestation-responsive resistance of RH. A Venn diagram analysis revealed 192 RH-specific and BPH-inducible probe sets. Finally, 23 BPH resistance-related gene candidates were selected based on the expression pattern clustering and Venn diagram analysis. In RH, the SA content significantly increased and the JA content significantly decreased after BPH infestation, with the former occurring prior to the latter. In RH, the differential genes in the SA pathway were synthesis-related and were up-regulated after BPH infestation. The differential genes in the JA pathway were also up-regulated. They were jasmonate ZIM-domain transcription factors, which are important negative regulators of the JA pathway. Comparatively, genes involved in the ET pathway were less affected by a BPH infestation in RH. DNA sequence analysis revealed that most BPH infestation-inducible genes may be regulated by the genetic background in a trans-acting manner, instead of by their promoters. CONCLUSIONS: We profiled the analysis of the global gene expression in RH and TN1 under BPH infestation, together with changes in the SA and JA levels. SA plays a leading role in the resistance response of rice to BPH. Our results will aid in understanding the molecular basis of RH's BPH resistance and facilitate the identification of new resistance-related genes for breeding BPH-resistant rice varieties.

Li R, Li JC, Zhou GX, Lou YG , 2013.

Selection of internal reference genes in real-time quantitative PCR of rice pest-induced related genes

Chinese Bulletin of Botany, 48(2):184-191.

DOI:10.3724/SP.J.1259.2013.00184      URL     [本文引用: 1]

[ 李冉, 李建彩, 周国鑫, 娄永根 , 2013.

水稻虫害诱导相关基因实时定量PCR中内参基因的选择

植物学报, 48(2):184-191.]

[本文引用: 1]

Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, Wang Q, Ye GY, Angharad MRG, Lou YG, Shu QY , 2018.

Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis

Nature Plants, 4(6):338-344.

DOI:10.1038/s41477-018-0152-7      URL     PMID:29735983      [本文引用: 2]

Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control(1,2). However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals(3), is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice(2). Serotonin and salicylic acid derive from chorismate(4). In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin(5). In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

Matthias E, Philippe R , 2019.

Molecular interactions between plants and insect herbivores

Annual Review of Plant Biology, 70(1):527-557.

DOI:10.1146/annurev-arplant-050718-095910      URL     [本文引用: 1]

Michael IL, Simon A, Wolfgang H , 2013.

Differential analysis of count data-the DESeq2 package

http://www.bioconductor.org/packages/2.13/bioc/vignettes/deseq2/inst/doc/des.pdf.

URL     [本文引用: 2]

Vivek V, Pratibha R, Prakash PK , 2016.

Plant hormone-mediated regulation of stress responses

BMC Plant Biology, 16:86.

URL     PMID:27079791      [本文引用: 1]

Yang L, Li A, Zhang WL , 2019.

Current understanding of the molecular players involved in resistance to rice planthoppers

Pest Management Science, 75(10):2566-2574.

URL     PMID:31095858      [本文引用: 1]

Zhang HJ, Hong YB, Huang L, Liu SX, Tian LM, Dai Y, Cao ZY, Huang LH, Li DY, Song FM , 2016.

Virus-induced gene silencing-based functional analyses revealed the involvement of several putative trehalose-6-phosphate synthase/phosphatase genes in disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato

Frontiers in Plant Science, 7:1176.

DOI:10.3389/fpls.2016.01176      URL     PMID:27540389     

Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

/