内共生菌Rickettsia对烟粉虱生物学特性的影响 *

应用昆虫学报, 2020, 57(4): 930-937 doi: 10.7679/j.issn.2095-1353.2020.095

研究论文

内共生菌Rickettsia对烟粉虱生物学特性的影响 *

王紫淇,1,2,**, 刘媛1,2, 师沛琼3, 安璇1,2, 邱宝利,1,2,4,***

1. 广东省生物农药创制与应用重点实验室,广州 510640

2. 生物防治教育部工程研究中心,广州 510640

3. 广东海洋大学农学院,湛江 524088

4. 岭南现代农业科学与技术广东省实验室茂名分中心,茂名 525000

Effects of Rickettsia infection on the ecological characteristics of whitefly Bemisia tabaci

WANG Zi-Qi,1,2,**, LIU Yuan1,2, SHI Pei-Qiong3, AN Xuan1,2, QIU Bao-Li,1,2,4,***

1. Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, Guangzhou 510640, China

2. Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510640, China

3. College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China

4. Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming 525000, China

通讯作者: *** E-mail:baileyqiu@scau.edu.cn

**第一作者First author,E-mail: vivian_wangziqi@163.com

收稿日期: 2019-03-19   接受日期: 2019-06-19   网络出版日期: 2020-07-27

基金资助: *国家自然科学基金.  31672028
广东省科技创新领军人才专项基金.  2016TX03N273

Corresponding authors: *** E-mail:baileyqiu@scau.edu.cn

Received: 2019-03-19   Accepted: 2019-06-19   Online: 2020-07-27

摘要

【目的】 阐明次生共生菌Rickettsia对烟粉虱生物学特性的影响。【方法】 Rickettsia阳性(B +)和阴性(B -)的烟粉虱在Rickettsia阳性棉花(C +)和阴性棉花(C -)上取食15 d,调查不同处理组烟粉虱的单雌产卵量、发育历期、存活率、成虫寿命以及F1代雌雄比。【结果】 (1)Rickettsia与烟粉虱共生可显著缩短烟粉虱的发育历期,B +C +及B +C -两处理组烟粉虱卵-成虫的世代发育历期均短于B -C +及B -C -两处理组。(2)Rickettsia可以提高烟粉虱各龄期的存活率,B +C +、B +C -、B -C +、B -C -各处理组烟粉虱世代存活率依次呈下降趋势。(3)Rickettsia对烟粉虱种群的雌雄比也有重要的影响,B -C +和B -C -处理组中烟粉虱种群雌性比显著小于B +C +和B +C -烟粉虱处理组。(4)Rickettsia可以影响烟粉虱成虫的寿命及繁殖力,Rickettsia阳性烟粉虱处理组成虫寿命及平均单雌产卵量显著高于阴性处理组。【结论】Rickettsia与烟粉虱共生以及Rickettsia在棉花植株中的存留对烟粉虱的发育、存活以及成虫雌性比、寿命和繁殖力都有有利影响,且Rickettsia与烟粉虱共生时对烟粉虱的影响力度要明显强于Rickettsia存留于棉花植株中时对烟粉虱产生的影响。

关键词: 烟粉虱 ; 共生菌 ; Rickettsia ; 发育历期 ; 繁殖力 ; 存活率

Abstract

[Objectives] To elucidate the effects of infection with the secondary symbiotic bacteria Rickettsia on the ecological characteristics of whitefly Bemisia tabaci. [Methods] Cotton was selected as the experimental plant. Rickettsia- positive (B +) and negative B. tabaci (B -) were allowed to feed on plants for 15 d. Plants on which B +insects had fed were regarded as Rickettsia persistent plants (C +) and those on which B -insects had fed were regarded as Rickettsia-free plants (C -). The developmental time and survival rate of B. tabaci nymphs feeding on these two types of cotton plants, and their subsequent fecundity and longevity as adults, was quantified and compared. [Results] Rickettsia can significantly shorten the developmental time of B. tabaci. The generational time of the B +C + and B +C - treatment groups was around 17-18d, whereas that of the B -C + and B -C - treatment groups was around 21-23 d. Rickettsia can also significantly increase the survival of B. tabaci; survival rates from egg to adult of the B +C +, B +C -, B -C + and B -C - treatment groups were 75.00%, 70.00%, 56.67% and 41.67%, respectively. Rickettsia also significantly increases the number of female offspring produced by B. tabaci. The number of female offspring produced by the B -C -and B -C +treatment groups was significantly lower than that produced by the B +C +and B +C -treatment groups. Furthermore, Rickettsia also affects the longevity and fecundity of B. tabaci. The longevity and average fecundity per female of the B +C +, B +C - treatment groups were significantly greater than those of the B -C - and B -C + treatment groups. [Conclusion] The symbiosis of Rickettsia in B. tabaci, and the persistence of Rickettsia in cotton plants, benefit the development and survival of whitefly nymphs, increase the number of female offspring produced and improve the longevity and reproduction of whitefly adults. In terms of its influence on B. tabaci biology, the symbiosis between Rickettsia and B. tabaci is more important than the persistence of Rickettsia in cotton plants.

Keywords: Bemisia tabaci ; symbiotic bacteria ; Rickettsia ; developmental duration ; fecundity ; survival rate

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王紫淇, 刘媛, 师沛琼, 安璇, 邱宝利. 内共生菌Rickettsia对烟粉虱生物学特性的影响 *. 应用昆虫学报[J], 2020, 57(4): 930-937 doi:10.7679/j.issn.2095-1353.2020.095

WANG Zi-Qi, LIU Yuan, SHI Pei-Qiong, AN Xuan, QIU Bao-Li. Effects of Rickettsia infection on the ecological characteristics of whitefly Bemisia tabaci. Chinese Journal of Applied Entomology[J], 2020, 57(4): 930-937 doi:10.7679/j.issn.2095-1353.2020.095

烟粉虱Bemisia tabaci(Gennadius)属于半翅目粉虱科小粉虱属,是世界范围内最具危害性的农业害虫之一,其危害的寄主包括蔬菜、果树、花卉以及豆类、棉花等经济作物在内的600余种植物(Naranjo et al.,2010)。除直接通过刺吸式口器取食植物韧皮部汁液、分泌蜜露诱发叶片霉污病之外,烟粉虱最大的危害是其若虫和成虫均可以传播植物双生病毒,最终引起植物枯死,严重影响植物生长和果实产量(安璇等,2015)。自20世纪90年代中期以来,烟粉虱已逐步取代温室白粉虱Trialeurodes vaporariorum(Westwood)成为我国蔬菜、花卉、园林植物、经济作物上的重要粉虱害虫(邱宝利等,2003;任顺祥等,2011)。由于烟粉虱的抗药性不断增强,寻求对其有效的、非化学防控措施一直是近年来烟粉虱防控研究的重点,除生物防治技术之外,内共生菌对烟粉虱生殖繁育、存活及抗药性的调控与影响是研究的重点与热点之一。

自然界中,内共生菌广泛存在于昆虫体内,在进化过程中,与昆虫形成相互依赖,互利共生的关系(Douglas,2015)。昆虫的内共生细菌可分为初生共生菌和次生共生菌两类(Baumann et al.,1995)。Rickettsia属于变形细菌纲Proteobacteria的a亚群立克次氏体科Rickettsiaceae的兼性真核细胞内共生菌(Perlman et al.,2006),是昆虫次生共生菌的重要代表类群之一。

早期关于Rickettsia研究主要集中在脊椎动物的Rickettsia群组,而关于节肢动物Rickettsia的研究,尤其是生物学特性方面的研究则相对较少。随着近年来对昆虫Rickettsia研究的进一步深入,发现其可通过诱导寄主昆虫雌性化、胞质不亲和杀雄等方式调控寄主昆虫的生殖行为(Hunter et al.,2003;Charlat et al.,2004;Hagimori et al.,2006),从而对不同寄主昆虫产生有利或有害的作用;Rickettsia还可增强寄主昆虫的药剂敏感性以及保护植物病毒在植物体内的传播(Oliver et al.,2003,2005)。另有研究发现Rickettsia的感染可使寄主昆虫豌豆长管蚜的体重减轻、后代雌性比降低等。Chiel等(2009)Himler等(2011)的研究发现Rickettsia的感染可以缩短B型烟粉虱世代发育历期,提高B型烟粉虱的存活率、产卵量和后代雌性比;此外,在寄主植物介导的昆虫共生菌传播研究方面,前期研究发现植物可以介导Rickettsia的水平传播(Caspi-Fluger et al.,2011;安璇等,2015;尹祥杰等,2015;Li et al.,2017),Rickettsia可以通过烟粉虱的取食而传入到植物体内,并可以经由植物传至Rickettsia阴性烟粉虱体内,但是受体植物体内Rickettsia的存留对烟粉虱的生物学特性有何影响,至今尚未有报道。

本文基于前人对烟粉虱Rickettsia研究的基础,以本实验室前期筛选的B型烟粉虱Rickettsia阳性、阴性种群为研究对象,进一步开展了内共生菌Rickettsia对烟粉虱生物学特性的影响及其机制等方面的研究,以期为深入了解共生菌与寄主昆虫之间的生物学、生态学互作关系提供科学数据与借鉴。

1 材料与方法

1.1 实验材料

1.1.1 供试寄主植物 棉花Gossypium spp.,品种为鲁棉研28号,购于山东鲁科农业有限公司。将棉花种子栽于高压灭菌的营养土钵中,并置于干净的网室,待棉花生长至6-8片完全伸展的叶片时用于实验。

1.1.2 供试虫源 实验室内利用单对饲养法筛选并继代繁殖的Rickettsia阴性烟粉虱(B-)、Rickettsia阳性烟粉虱种群(B+)。利用单对饲养法筛选的两个种群均为B型烟粉虱(也称Middle East-Asia Minor1,MEAM1隐种)且具有相同的遗传背景。

1.2 实验方法

试验均在人工气候室内进行,试验条件设置为:温度(26±1)℃,相对湿度(RH)70%-80%,光周期为14 L:10 D,光照度为3 000 lx左右。

1.2.1 Rickettsia阳性植物的制备 选取叶片长势良好的健康棉花苗若干,在每株棉花苗偏上部(第3-4片叶)选取一片叶片并标记;取Rickettsia阳性烟粉虱成虫30对,利用叶片笼接种于叶片上,15 d后将烟粉虱成虫用吸虫管吸走,并将标记的叶片上面的烟粉虱卵以及若虫挑取干净,根据本实验室前期的检测结果,该处理后的棉花即为Rickettsia阳性植株(C+)。

1.2.2 烟粉虱总DNA的提取 挑取单头烟粉虱成虫,经ddH2O充分洗涤后置于1.5 mL离心管中,每管加入3 mL STE裂解液充分研磨至匀浆,补足裂解液至30 mL,并加入0.2-0.3 mL蛋白酶K,56 ℃恒温水浴裂解2-3 h,95 ℃水浴10 min灭活蛋白酶K,短暂离心后取上清液置于﹣20 ℃冰箱中保存备用。实验重复3次,每次重复10头B型烟粉虱成虫。

1.2.3 植物总DNA的提取 称取棉花植物叶片样本0.01 g,置于预先灭菌的研钵中;加入250 µL CTAB缓冲液,充分研磨样本后倒入1.5 mL离心管中;再向研钵中加入250 µL CTAB缓冲液冲洗研钵并倒入先前的离心管中;65 ℃水浴30 min,加入苯酚:氯仿:异戊醇(25:24:1)溶液,上下混匀5 min;12 000 r/min离心10 min,取上清加入等量预先冷却的异丙醇,4 ℃静置30 min;12 000 r/min离心10 min,弃上清,并晾干;加入100 µL ddH2O(含1 μL 10 mg/mLRnase),轻轻震荡后在超微量分光光度计上检测DNA质量,无问题后置于﹣20 ℃冰箱备用。

1.2.4 烟粉虱和棉花植物体内Rickettsia的PCR检测 Rickettsia PCR检测的引物为:Rb F- GCTCAGAACGAACGCTATC,Rb R-GAAGGAAAGC ATCTCTGC(Gottlieb et al,2006);PCR反应体系为25 μL:ddH2O 16 μL,10 mmol∙L-1 10×PCR buffer 2.5 μL,双向引物各1 μL,2.5 mmol∙L-1 dNTPs 2 μL,Mg2+1.0 μL,Tap聚合酶 0.5 μL,DNA 模板 1 μL;扩增程序为:95 ℃预变性 3 min,然后 92 ℃ 30 s,58 ℃30 s,72 ℃ 30 s执行35个循环,最后72 ℃延伸10 min。原生共生菌Portiera 16S DNA和ddH2O分别作为PCR的阳性与阴性对照。扩增完成后PCR产物用1%的琼脂糖凝胶电泳检测并拍照。

1.2.5 Rickettsia阳性与阴性烟粉虱在R+棉花上的生物学特性 选取预先制备的Rickettsia阳性棉花植株(记为C+)2株;在阳性植株接虫标记叶片下部相邻位置选取一片叶片并标记,取Rickettsia阳性与阴性烟粉虱(记为B+和B-)成虫各20对,利用叶片笼分别接种于被标记的叶片上,24 h后用吸虫管吸走接种的烟粉虱,体视显微镜下观察并分别记录烟粉虱的产卵量。将2株棉花植株置于人工气候箱内逐日观察烟粉虱(记为F0代)卵、若虫及蛹的发育情况,并同时记录烟粉虱发育历期及存活率等数据。待叶片上的烟粉虱羽化时,每个处理吸取烟粉虱子代成虫各10头,体视显微镜下鉴定雌雄并记录;另外每个处理组收集F1代成虫烟粉虱于指型管内,鉴定雌雄后随机选取20对烟粉虱成虫,分别将其单对接种在20个棉花叶片上,记录烟粉虱F1代成虫的逐日产卵量、存活率和寿命等数据,实验重复6次。

1.2.6 Rickettsia阳性与阴性烟粉虱在R-棉花上的生物学特性 本实验与1.2.5相同,只是供试棉花为Rickettsia 阴性棉花植株(记为C-),实验重复6次。

1.3 数据分析

对试验中烟粉虱的发育历期、存活率、雌雄比以及F1代逐日产卵量、存活率、寿命数据采用采用SPSS、Statistics软件对各组数值进行单因素方差分析,得到相应各组数据的标准差和标准误,显著性分析采用Duncan’s分析法,图、表用Microsoft Excel(2010)软件进行绘制。

2 结果与分析

2.1 不同处理中烟粉虱与棉花体内Rickettsia共生菌的检测

PCR检测的结果表明,在前期处理并预期为Rickettsia阳性的烟粉虱和棉花植株内,Rickettsia的扩增结果为阳性,而预期为Rickettsia阴性烟粉虱与棉花植株中Rickettsia的检测结果为阴性(图1),表明试验所用的阳性B型烟粉虱个体和阳性植株中的确有Rickettsia的感染或存留。

图1

图1   不同处理中烟粉虱与棉花植株体内Rickettsia的PCR检测

M: DNA分子量marker;1:Portiera阳性对照;2:ddH2O阴性对照;3:Rickettsia阳性烟粉虱(B+);4:Rickettsia阳性棉花植株(C+);5:Rickettsia阴性烟粉虱(B-);6:Rickettsia阴性棉花植株(C-)。

Fig. 1   PCR detection of Rickettsia in different Bemisia tabaci and cotton treatments

M: Molecular weight; 1: Portiera; 2: ddH2O; 3: Rickettsia- positive Bemisia tabaci (B+); 4: Rickettsia-positive cotton plants (C+); 5: Rickettsia-negative Bemisia tabaci (B-); 6: Rickettsia-negative cotton plants (C-).


2.2 Rickettsia对烟粉虱生长发育的影响

Rickettsia阳性烟粉虱在阳性棉花植株上(B+C+)发育最快,Rickettsia阴性的粉虱在阴性棉花植株上(B-C-)发育最慢,而Rickettsia阳性烟粉虱在阴性棉花植株上(B+C-)、Rickettsia阴性的粉虱在阳性棉花植株上(B-C+)发育时间居中,4种处理都达到了显著差异(图2:A)。

图2

图2   Rickettsia感染或存留对烟粉虱生长发育的影响

A. 烟粉虱卵的发育历期;B. 若虫-伪蛹发育历期;C.卵-成虫发育历期。图中数据为平均值±标准误,柱上标有不同字母表示在P˂0.05水平上差异显著。下图同。

Fig. 2   Effects of Rickettsia on the developmental of Bemisia tabaci

A. Developmental time of B. tabaci egg; B. Developmental time of B. tabaci nymph, pre-pupa; C. Developmental time of B. tabaci egg-adult. Data in the figure are mean±SE. Histograms with different letters indicate significant difference at the 0.05 level. The same below.


不同处理组合中的若虫期和伪蛹期的,发育速度与卵期趋势相似,即B+C+发育最快,B-C-最慢(图2:B)。但B+C+与B+C-两个处理组之间卵至成虫发育历期差异不显著,B-C+与B-C-两个处理组之间发育历期差异不显著(图2:C)。

2.3 Rickettsia对烟粉虱存活率的影响

Rickettsia对棉花寄主上烟粉虱各龄期存活率的影响如图3。4种处理中,烟粉虱卵期的存活率均超过80%,其中B+C+和B+C-两组处理中烟粉虱卵期的存活率超过90%,显著高于B-C+和B-C-两组处理(图3:A)。烟粉虱若虫期的存活率要低于伪蛹期,但总体趋势是B+C+处理组>B+C-处理组>B-C+处理组>B-C-处理组(图3:B)。就整个发育世代的存活率来讲,B+C+和B+C-两个处理组之间无显著差异,但都明显高于B-C+、B-C-处理组,此外,B-C+处理组的世代存活率也显著高于 B-C-处理组(图3:C)。

图3

图3   Rickettsia对烟粉虱各个虫龄发育存活率的影响

A.烟粉虱卵的存活率;B. 若虫-伪蛹的存活率;C. 卵-成虫的存活率。

Fig. 3   Effect of Rickettsia on the survival rate of Bemisia tabaci different instars

A. The survivals of B. tabaci egg; B. The survivals of nymph, pre-pupa; C. The survivals of egg-adult.


2.4 Rickettsia对烟粉虱繁殖力的影响

Rickettsia感染对烟粉虱种群的雌性比有着较大的影响,“B-C--和“B-C+”两处理组烟粉虱成虫雌性比显著小于“B+C+”和“B+C-”两处理组,但Rickettsia阳性烟粉虱两个处理组、Rickettsia阴性两个处理组之间无显著性差异 (图4:A)。

图4

图4   Rickettsia对烟粉虱繁殖力的影响

A. 烟粉虱成虫性比;B. 烟粉虱成虫平均寿命;C. 烟粉虱平均单雌产卵量。

Fig. 4   Effects of Rickettsia on the reproductive of Bemisia tabaci

A. The female percentage; B. Averaged longevity; C. Fecundity of B. tabaci F1 generation.


Rickettsia阳性烟粉虱两处理组中(B+C+、B+C-)成虫的平均寿命无明显差异,但两者都明显长于Rickettsia阴性的烟粉虱种群的寿命(B-C+、B-C-);此外,Rickettsia阴性的烟粉虱种群在Rickettsia存留的棉花植株上的平均寿命也显著长于在无Rickettsia存留的棉花植株上的种群寿命,即B-C+>B-C-图4:B)。在烟粉虱成虫的产卵量方面(图4:C),B+C+和B+C-处理组的平均单雌产卵量分别为150.1粒/雌和133.8粒/雌;B-C-和B-C+两处理组的平均单雌产卵量则分别74.7粒/雌和109.7粒/雌,均显著少于Rickettsia阳性烟粉虱两处理组。在Rickettsia阴性两处理间,B-C+处理组中烟粉虱成虫的平均单雌产卵量也显著高于B-C-处理组。说明Rickettsia的感染或存留显著提高了烟粉虱成虫的产卵量。

2.5 不同处理中烟粉虱成虫的逐日存活率

4个不同处理组烟粉虱成虫的逐日存活率如图5所示。2组Rickettsia阳性烟粉虱处理组,其逐日存活率趋势一致,最长寿命到27-28 d;而Rickettsia阴性的B-C-处理组中第23天烟粉虱成虫全部死亡,说明Rickettsia的感染可以延长烟粉虱成虫的寿命。

图5

图5   不同处理中烟粉虱成虫的逐日存活率

Fig. 5   Daily survival rate of Bemisia tabaci F1 generation in different treatments


3 讨论

近20年来,蚜虫、粉虱等刺吸式昆虫内共生菌的研究引起了学者们的广泛关注并获得了长足的研究进展。烟粉虱是半翅目刺吸式昆虫的代表性种群,前期研究已经表明,烟粉虱体内含有WolbachiaRickettsia等多种内共生菌,而烟粉虱是一个多生物型或隐种组成的种的复合(Species complex),其不同生物型体内感染的内共生菌也不尽相同,因此内共生菌与烟粉虱之间的生理互作关系已成为近年来昆虫内共生菌研究的热点与焦点之一。通常,内共生菌在昆虫世代间呈严格的垂直传播,为了在宿主昆虫种群中很好地保持下去,它们也会采取一些策略,或提高宿主的适合度,或以有利于它们自身传播的方式调控宿主生殖,或进行水平传播(Moran and Telang,1998;Caspi-Fluger et al.,2011;Li et al.,2017)。本文的研究发现,Rickettsia对烟粉虱的生长、发育和繁殖过程起着重要的作用,结果可进一步丰富我们对昆虫内共生菌的理论认知。

Chiel等(2009)的研究发现,在B型烟粉虱中,Rickettsia阳性雌烟粉虱比Rickettsia阴性雌烟粉虱的世代发育历期短1.5 d,而雄性烟粉虱的世代发育历期不受Rickettsia的影响。Himler等(2011)研究发现,Rickettsia的感染可以缩短B型烟粉虱的世代发育历期,其中雌性烟粉虱被缩短2.26 d,雄性烟粉虱被缩短1.32 d。在本研究中,Rickettsia的感染同样能够显著缩短B型烟粉虱的世代发育历期,缩短天数约为6.0 d。以上研究结果基本一致,但又有不同,比如在具体的缩短时间上,以及对雌性和雄性的影响上。这些差异可能与烟粉虱的寄主植物有一定关系,因为烟粉虱在不同的寄主植物上发育历期不一致(邱宝利等,2003;郭建英等,2011)。Chiel等(2009)的研究中B型烟粉虱是世代饲养于烟草上,实验过程中接入甜辣椒叶片上进行实验,Himler等(2011)的研究中烟粉虱在豇豆上世代饲养,实验所用寄主植物同为豇豆。本研究中烟粉虱的世代寄主植物及实验中所用的寄主植物均为棉花。

寄主植物中存在的Rickettsia对不同烟粉虱种群发育历期的影响鲜有报道。本研究发现,当寄主植物棉花中存在Rickettsia时,Rickettsia阳性烟粉虱、Rickettsia阴性烟粉虱卵的发育历期均显著缩短,而对烟粉虱的世代发育历期影响不明显。这说明烟粉虱的发育历期主要是受其体内Rickettsia的影响,而植物中的Rickettsia对其产生的影响较为微弱。

昆虫种群中的雌性数量对于昆虫种群的保持与扩张起着重要作用,雌性数量的增多有利于种群的繁衍与扩张。近年来的一些研究表明,Rickettsia能够通过诱导杀雄、诱导孤雌生殖来调控宿主昆虫的性比。Werren等(1994)研究发现,Rickettsia的感染与吉丁虫Brachys tessellatus的雄性胚胎致死有关,用四环素处理吉丁虫后,雄性胚胎的孵化数和存活数均有增加。Hagimori等(2006)发现Rickettsia与内寄生蜂芙新姬小蜂Neochrysocharis formosa的产雌孤雌生殖有关,他们获得的N. formosa产雌孤雌生殖品系感染有内共生菌Rickettsia,当用四环素消除Rickettsia后,有不感染Rickettsia的雄性后代产生,这表明Rickettsia能够诱导N. formosa进行孤雌生殖。Majerus 和Majerus(2010)研究发现,日本瓢虫Propylea japonica 体内的Rickettsia也具有杀雄作用,感染Rickettsia的日本瓢虫产生更多的雌性后代。Giorgini等(2010)的研究也表明,寄生蜂Pnigalio soemius的孤雌生殖与Rickettsia有关,感染有Rickettsia的寄生蜂仅产生雌虫后代,抗生素处理之后,寄生蜂的后代几乎全部为雄虫。本研究中,Rickettsia阳性烟粉虱的雌性比71.33%显著高于Rickettsia阴性烟粉虱的雌性比31.67%,这与Himler等(2011)的研究结果是一致的。烟粉虱进行两性生殖、孤雌产雄生殖,当有Rickettsia感染时烟粉虱产生更多的雌性后代,说明Rickettsia对烟粉虱性比的影响可能是通过诱导杀雄实现的,也有可能是当烟粉虱感染有Rickettsia时更倾向于进行两性生殖。本研究中,与植物携带Rickettsia对烟粉虱的性比影响相比,虫体自身带菌比取食带菌植株对其F1代的雌性比影响更大,这可能与烟粉虱通过取食带菌叶片获得的Rickettsia含量有限相关。

产卵量也是衡量昆虫繁殖力的指标之一,本研究中Rickettsia阳性烟粉虱的单雌产卵量显著高于Rickettsia阴性烟粉虱的单雌产卵量,这与Himler等(2011)的研究结果一致。此外,本研究发现植物携带Rickettsia能够增加烟粉虱的单雌产卵量,这对烟粉虱种群扩张来说是有益的。推测其原因可能是植物中的Rickettsia可与植物发生互作,而这种互作对于烟粉虱来说是有利的,比如植物营养水平、防御反应等的改变;也有可能是因为烟粉虱通过取食Rickettsia阳性植物而获取了Rickettsia,烟粉虱体内Rickettsia含量的增多导致。

总之,本研究发现Rickettsia与烟粉虱共生以及Rickettsia在植物体内的存留都对烟粉虱的生长发育、存活率、寿命、性比、产卵量等生物学特性产生有利影响,表明Rickettsia对烟粉虱来说不仅是共生者,而且还是生殖操控者;但Rickettsia本身、Rickettsia在植物体内的存留对烟粉虱生物学特性的影响机制还有待于进一步深入研究。

参考文献

An X, Li YH, Li SJ, Guo CF, Ren SX, Qiu BL , 2015.

Preliminary research on the distribution and transmission efficiency of Rickettsia, an endosymbiont of whitefly Bemisia tabaci

Chinese Journal of Applied Entomology, 52(1):135-142.

[本文引用: 2]

[ 安璇, 李翌菡, 李绍建, 郭长飞, 任顺祥, 邱宝利 , 2015.

烟粉虱内共生菌 Rickettsia 在植物体内的分布及转移效率初探

应用昆虫学报, 52(1):135-142.]

[本文引用: 2]

Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA , 1995.

Genetics, physiology, and evolutionary relationships of the genus Buchnera: Intracellular symbionts of aphids

Annual Reviews in Microbiology, 49(1):55-94.

DOI:10.1146/annurev.mi.49.100195.000415      URL     [本文引用: 1]

Caspi-Fluger A, Inbar M, Mozes-Daube N, Mouton L, Hunter MS, Zchori-Fein E , 2011.

Rickettsia ‘in’ and ‘out’: Two different localization patterns of a bacterial symbiont in the same insect species

PLoS ONE, 6(6):e21096.

DOI:10.1371/journal.pone.0021096      URL     PMID:21712994      [本文引用: 2]

Intracellular symbionts of arthropods have diverse influences on their hosts, and their functions generally appear to be associated with their localization within the host. The effect of localization pattern on the role of a particular symbiont cannot normally be tested since the localization pattern within hosts is generally invariant. However, in Israel, the secondary symbiont Rickettsia is unusual in that it presents two distinct localization patterns throughout development and adulthood in its whitefly host, Bemisia tabaci (B biotype). In the

Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E , 2011.

Horizontal transmission of the insect symbiont Rickettsia is plant-mediated

Proceedings of the Royal Society B-Biological Sciences, 279(1734):1791-1796.

DOI:10.1098/rspb.2011.2095      URL    

Charlat S, Ballard JWO, Mercot H , 2004.

What maintains non-cytoplasmic incompatibility inducing Wolbachia in their hosts: A case study from a natural Drosophila yakuba population

Journal of Evolutionary Biology, 17(2):322-330.

DOI:10.1046/j.1420-9101.2003.00676.x      URL     PMID:15009266      [本文引用: 1]

Cytoplasmic incompatibility (CI) allows Wolbachia to invade hosts populations by specifically inducing sterility in crosses between infected males and uninfected females. In some species, non-CI inducing Wolbachia, that are thought to derive from CI-inducing ancestors, are common. In theory, the maintenance of such infections is not possible unless the bacterium is perfectly transmitted to offspring--and/or provides a fitness benefit to infected females. The present study aims to test this view by investigating a population of Drosophila yakuba from Gabon, West Africa. We did not find any evidence for CI using wild caught females. Infected females from the field transmitted the infection to 100% of their offspring. A positive effect on female fecundity was observed one generation after collecting, but this was not retrieved five generations later, using additional lines. Similarly, the presence of Wolbachia was found to affect mating behaviour, but the results of two experiments realized five generations apart were not consistent. Finally, Wolbachia was not found to affect sex ratio. Overall, our results would suggest that Wolbachia behaves like a neutral or nearly neutral trait in this species, and is maintained in the host by perfect maternal transmission.

Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E , 2009.

Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae)

Annals of the Entomological Society of America, 102(3):413-418.

DOI:10.1603/008.102.0309      URL     [本文引用: 3]

Douglas AE , 2015.

Multiorganismal insects: Diversity and function of resident microorganisms

Annual Review of Entomology, 60:17-34.

DOI:10.1146/annurev-ento-010814-020822      URL     PMID:25341109      [本文引用: 1]

All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, KatZir N, Zchori-Fein E , 2006.

Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera:Aleyrodidae)

Applied Environmental Microbiology, 72(5):3646-3652.

DOI:10.1128/AEM.72.5.3646-3652.2006      URL     PMID:16672513      [本文引用: 1]

Whiteflies (Homoptera: Aleyrodidae) are sap-sucking insects that harbor

Giorgini M, Bernardo U, Monti MM, Nappo AG, Gebiola M , 2010.

Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius(Hymenoptera: Eulophidae)

Applied and Environmental Microbiology, 76(8):2589-2599.

DOI:10.1128/AEM.03154-09      URL     PMID:20173065      [本文引用: 1]

Bacteria in the genus Rickettsia are intracellular symbionts of disparate groups of organisms. Some Rickettsia strains infect vertebrate animals and plants, where they cause diseases, but most strains are vertically inherited symbionts of invertebrates. In insects Rickettsia symbionts are known to have diverse effects on hosts ranging from influencing host fitness to manipulating reproduction. Here we provide evidence that a Rickettsia symbiont causes thelytokous parthenogenesis (in which mothers produce only daughters from unfertilized eggs) in a parasitoid wasp, Pnigalio soemius (Hymenoptera: Eulophidae). Feeding antibiotics to thelytokous female wasps resulted in production of progeny that were almost all males. Cloning and sequencing of a fragment of the 16S rRNA gene amplified with universal primers, diagnostic PCR screening of symbiont lineages associated with manipulation of reproduction, and fluorescence in situ hybridization (FISH) revealed that Rickettsia is always associated with thelytokous P. soemius and that no other bacteria that manipulate reproduction are present. Molecular analyses and FISH showed that Rickettsia is distributed in the reproductive tissues and is transovarially transmitted from mothers to offspring. Comparison of antibiotic-treated females and untreated females showed that infection had no cost. Phylogenetic analyses of 16S rRNA and gltA gene sequences placed the symbiont of P. soemius in the bellii group and indicated that there have been two separate origins of the parthenogenesis-inducing phenotype in the genus Rickettsia. A possible route for evolution of induction of parthenogenesis in the two distantly related Rickettsia lineages is discussed.

Guo JY, Yang Y, Cong L, Chen T, Wan FH , 2011.

Development fitness of Bemisia tabaci B-biotype feeding on different host plants

Chinese Journal of Applied Entomology, 48(1):43-47.

[本文引用: 1]

[ 郭建英, 杨洋, 丛林, 陈婷, 万方浩 , 2011.

不同寄主植物对B型烟粉虱发育适合度的影响

应用昆虫学报, 48(1):43-47.]

[本文引用: 1]

Hagimori T, Abe Y, Date S, Miura K , 2006.

The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects

Current Microbiology, 52(2):97-101.

DOI:10.1007/s00284-005-0092-0      URL     [本文引用: 2]

The larval endoparasitoid, Neochrysocharis formosa (Westwood), is an important natural enemy of the leafminer Liriomyza trifolii (Burgess) in Japan. The thelytokous strain of N. formosa mostly produces female progeny. Male progeny were produced by females treated with tetracycline, suggesting that microorganisms induce thelytoky in N. formosa. The result of nucleotide sequencing of the 16S rRNA gene indicated that the parasitoid is infected with a Rickettsia bacterium, which appears to be causative of the thelytoky. Although Rickettsia-bellii-like bacteria have been found to be associated with various reproductive disorders, this is the first finding of a parthenogenesis-inducing Rickettsia among insects.]]>

Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS , 2011.

Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias

Science, 332(6026):254-256.

DOI:10.1126/science.1199410      URL     [本文引用: 5]

Maternally inherited bacterial symbionts of arthropods are common, yet symbiont invasions of host populations have rarely been observed. Here, we show that Rickettsia sp. nr. bellii swept into a population of an invasive agricultural pest, the sweet potato whitefly, Bemisia tabaci, in just 6 years. Compared with uninfected whiteflies, Rickettsia-infected whiteflies produced more offspring, had higher survival to adulthood, developed faster, and produced a higher proportion of daughters. The symbiont thus functions as both mutualist and reproductive manipulator. The observed increased performance and sex-ratio bias of infected whiteflies are sufficient to explain the spread of Rickettsia across the southwestern United States. Symbiont invasions such as this represent a sudden evolutionary shift for the host, with potentially large impacts on its ecology and invasiveness.

Hunter MS, Perlman SJ, Kelly SE , 2003.

A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella

Proceedings of the Royal Society of London B: Biological Sciences, 270(1529):2185-2190.

[本文引用: 1]

Li YH, Ahmed MZ, Li SJ, Lv N, Shi PQ, Chen XS, Qiu BL , 2017.

Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species

FEMS Microbiology Ecology, 93(12): fix138.

URL     PMID:29040502      [本文引用: 2]

Moran NA, Telang A , 1998.

Bacteriocyte-associated symbionts of insects

Bioscience, 48(4):295-304.

DOI:10.2307/1313356      URL     [本文引用: 1]

Majerus TM, Majerus ME , 2010.

Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica(Coleoptera: Coccinellidae)

BMC Evolutionary Biology, 10(1):37.

DOI:10.1186/1471-2148-10-37      URL     [本文引用: 1]

Naranjo SE, Castle SJ, de Barro PJ, Liu SS , 2010.

Population dynamics, demography, dispersal and spread of Bemisia tabaci//Stansly PA, Naranjo SE(eds.). Bemisia: Bionomics and Management of a Global Pest

Dordrecht: Springer. 185-226.

[本文引用: 1]

Oliver KM, Russell JA, Moran NA, Hunter MS , 2003.

Facultative bacterial symbionts in aphids confer resistance to parasitic wasps

Proceedings of the National Academy of Sciences, 100(4):1803-1807.

DOI:10.1073/pnas.0335320100      URL     [本文引用: 1]

Oliver KM, Moran NA, Hunter MS , 2005.

Variation in resistance to parasitism in aphids is due to symbionts not host genotype

Proceedings of the National Academy of Sciences of the United States of America, 102(36):12795-12800.

URL     PMID:16120675      [本文引用: 1]

Perlman SJ, Hunter MS, Zchori-Fein E , 2006.

The emerging diversity of Rickettsia

Proceedings of the Royal Society of London B: Biological Sciences, 273(1598):2097-2106.

[本文引用: 1]

Qiu BL, Ren SX, Lin L, Musa PD , 2003.

Effect of host plants on the development and reproduction of Bemisia tobaci(Homoptera Aleyrodidae)

Acta Ecologica Sinica, 23(6):1206-1211.

[本文引用: 2]

[ 邱宝利, 任顺祥, 林莉, Musa PD , 2003.

不同寄主植物对烟粉虱发育和繁殖的影响

生态学报, 23(6):1206-1211.]

[本文引用: 2]

Ren SX, Qiu BL, Ge F, Zhang YJ, Du YZ , 2011.

Research progress of the monitoring, forecast and sustainable management of whitefly pests in China

Chinese Journal of Applied Entomology, 48(1):7-15.

[本文引用: 1]

[ 任顺祥, 邱宝利, 戈峰, 张友军, 杜予州 , 2011.

粉虱类害虫的检测预警与可持续治理技术透视

应用昆虫学报, 48(1):7-15.]

[本文引用: 1]

Werren JH, Hurst GD, Zhang W, Breeuwer JA, Stouthamer R, Majerus ME , 1994.

Rickettsia relative associated with male killing in the ladybird beetle ( Adalia bipunctata)

Journal of Bacteriology, 176(2):388-394.

DOI:10.1128/jb.176.2.388-394.1994      URL     PMID:8288533      [本文引用: 1]

A cytoplasmically inherited microorganism associated with male killing in the two-spot ladybird beetle, Adalia bipunctata, is shown to be closely related to bacteria in the genus Rickettsia. Sequencing of a PCR-amplified product of the 16S genes coding for rRNA (16S rDNA) shows the organism associated with male killing in ladybirds to share a common ancestry with the Rickettsias relative to other genera (e.g., Anaplasma, Ehrlichia, and Cowdria). The rickettsial 16S rDNA product is found in four strains of ladybird beetle showing male embryo lethality and is absent from two uninfected strains and an antibiotic-cured strain. In addition, a revertant strain that had naturally lost the male-killing trait failed to amplify the rickettsial 16S rDNA product. Use of PCR primers for a 17-kDa protein antigen which is found only in rickettsias also resulted in an amplified product from infected strains. Uninfected, cured, and revertant strains and insect species infected with related bacteria (cytoplasmic-incompatibility bacteria from Nasonia wasps) failed to amplify the product. Discovery of a close relative of rickettsias associated with sex ratio distortion in insects has implications for the evolution and population dynamics of this bacterial genus.

Yin XJ, Sun XX, Muhammad ZA, Ren SX, Qiu BL , 2015.

The phylogeny of south China populations of Bemisia tabaci and Encarsia parasitoid wasps in relation to infection with the Cardinium endosymbiont

Chinese Journal of Applied Entomology, 52(4):1014-1022.

[本文引用: 1]

[ 尹祥杰, 孙秀新, Muhammad ZA, 任顺祥, 邱宝利 , 2015.

南方部分地区烟粉虱及其寄生蜂内共生菌Cardinium的检测及其系统发育关系

应用昆虫学报, 52(4):1014-1022.]

[本文引用: 1]

/