武汉地区蚊类群落结构、时空动态及多样性研究 *

应用昆虫学报, 2020, 57(4): 955-962 doi: 10.7679/j.issn.2095-1353.2020.098

研究论文

武汉地区蚊类群落结构、时空动态及多样性研究 *

郭慧,1,**, 李华刚2, 吴林3, 丁浩4, 柳静5, 吴太平5, 田俊华,5,***

1. 武汉市东西湖区疾病预防控制中心,武汉 430040

2. 武汉市黄陂区疾病预防控制中心,武汉 432200

3. 武汉市江夏区疾病预防控制中心,武汉 430200

4. 武汉市青山区疾病预防控制中心,武汉 430080

5. 武汉市疾病预防控制中心,武汉 430015

The structure, spaciotemporal dynamics, and diversity of mosquito communities in Wuhan

GUO Hui,1,**, LI Hua-Gang2, WU Lin3, DING Hao4, LIU Jing5, WU Tai-Ping5, TIAN Jun-Hua,5,***

1. Dong xi-hu District Center for Disease Control and Prevention of Wuhan, Wuhan 430040, China

2. Huang-pi District Center for Disease Control and Prevention of Wuhan, Wuhan 432200, China

3. Jiang-xia District Center for Disease Control and Prevention of Wuhan, Wuhan 430200, China

4. Qing-shan District Center for Disease Control and Prevention of Wuhan, Wuhan 430080, China

5. Wuhan Center for Disease Control and Prevention, Wuhan 430015, China

通讯作者: *** E-mail:tianjunhua1980@163.com

**第一作者First author,E-mail:g. hcool@hotmail.com

收稿日期: 2019-06-25   接受日期: 2019-12-25   网络出版日期: 2020-07-27

基金资助: *国家重点研发计划.  2016YFC1201905

Corresponding authors: *** E-mail:tianjunhua1980@163.com

Received: 2019-06-25   Accepted: 2019-12-25   Online: 2020-07-27

摘要

【目的】 掌握武汉地区蚊类群落结构、时空动态及多样性特征,为蚊媒防治提供科学依据。【方法】 2007-2016年每月采用灯诱法调查该地区5种生境蚊类群落结构和密度的时空动态,测定群落物种丰富度、多样性指数、均匀度指数及优势度指数。【结果】 2007-2016年武汉市蚊平均密度为58.54只/(灯·夜),隶属2亚科5属8种,优势蚊种为致倦库蚊Culex pipiens pallens和三带喙库蚊Culex tritaeniorhynchus。季节消长呈单峰,高峰出现在6月。牲畜棚、农户生境与居民区、公园、医院生境在蚊类丰富度、多样性指数、均匀度指数和优势度指数方面均有差异。【结论】 武汉地区不同季节和不同生境蚊虫种类、数量和多样性有差异,应根据具体情况采取有针对性的蚊媒防治措施。

关键词: 蚊虫 ; 群落结构 ; 时空动态 ; 多样性

Abstract

[Objectives] To investigate the structure, spaciotemporal dynamics, and diversity, of mosquito communities in Wuhan, and thereby improve mosquito prevention and control in this region. [Methods] The spaciotemporal dynamics of mosquito community structure and mosquito density in five habitats were monitored monthly from 2007 to 2016 using the lamp trap method. Species richness and diversity, evenness, dominance and similarity, indices, were calculated and compared. [Results] The average density of mosquitoes in Wuhan during the study period was 58.54 /(lamp night). Eight species, from 5 genera and 2 subfamilies, were captured, and the dominant species were Culex pipiens pallens and Culex tritaeniorhynchus. There was a single seasonal peak of abundance in June. Habitats such as livestock sheds and farmer’s households differed in species richness, and in diversity, evenness and dominance indices, to residential areas, parks and hospitals. [Conclusion] The species, quantity and diversity, of mosquito communities in different seasons and habitats in Wuhan differed, and methods of mosquito prevention and control should consequently take into account both season and habitat type.

Keywords: mosquito ; community structure ; space-time dynamics ; diversity

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭慧, 李华刚, 吴林, 丁浩, 柳静, 吴太平, 田俊华. 武汉地区蚊类群落结构、时空动态及多样性研究 *. 应用昆虫学报[J], 2020, 57(4): 955-962 doi:10.7679/j.issn.2095-1353.2020.098

GUO Hui, LI Hua-Gang, WU Lin, DING Hao, LIU Jing, WU Tai-Ping, TIAN Jun-Hua. The structure, spaciotemporal dynamics, and diversity of mosquito communities in Wuhan. Chinese Journal of Applied Entomology[J], 2020, 57(4): 955-962 doi:10.7679/j.issn.2095-1353.2020.098

蚊类是重要的医学昆虫类群,不仅对人和动物骚扰吸血,而且是世界上最重要的病原体传播媒介,可传播疟疾、登革热、寨卡病毒病、流行性乙型脑炎、西尼罗热、丝虫病和黄热病等多种自然疫源性疾病,每年罹患蚊媒传染病的病例就达7亿多,可能导致严重的公共卫生问题(崔春来等,2015;Khaderet al.,2018)。蚊虫也是新型病原体的储存宿主,一些病原体,如立克次体可以经卵垂直传播,因此传播新型虫媒传染病病原体的隐性风险较大(Guo et al.,2016)。蚊类的生存离不开环境因子(光、温度、水和天敌),只有充分考虑到蚊类与环境以及生态系统的各种关系,掌握其生态规律,才能选择合理的防治方法(张菊仙和龚正达,2008);同时,群落生态学是害虫综合治理(Integrated pest management,IMP)策略和实践的理论基石和前提(张晓明等,2015),已成为国内外大多数生态学家、昆虫学家、植保和防疫工作者的共识。国内关于农林业昆虫、鸟类、底栖动物等群落结构、多样性和动态等方面研究较多,如桃园捕食性节肢动物(米宏彬等,2014)、麦田捕食性昆虫(公维敏等,2015)、荔枝园节肢动物(孟翔等,2015)、鸟类(肖剑平等,2019)、底栖动物(蒋万祥等,2009)等。但是,蚊类作为重要的医学昆虫类群在多样性等群落生态学方面研究较少,仅云南(张菊仙等,2008)和江苏(马桢红等,2018)的少数学者有过相关报道。

基于对蚊类群落结构、多样性和动态的认识较少,本文通过2007-2016连续调查武汉市5种生境蚊类群落组成,分析其动态及其时空特征,旨在为蚊虫防制和蚊媒疾病控制奠定基础,进而为今后对蚊类群落结构演替监测提供参考。

1 材料与方法

1.1 调查地点

以武汉市青山区(24街社区、31街社区、青山公园、青山少年宫、红钢城街社区卫生服务中心和青山区结防所)、东西湖区(田园社区、恒春里社区、五环广场、西郊公园、东西湖区人民医院和东西湖区妇幼保健院)、黄陂区(环城街桃花村农户和猪圈、环城街下石村农户和猪圈)和江夏区(五里界街中洲村4组农户和猪圈、五里界街中洲村8组农户和猪圈)为调查点。青山区和东西湖区调查居民区、绿化带/公园、医院3种生境,黄陂和江夏调查农户和猪圈2种生境。在调查期间,调查地不施用任何卫生杀虫剂或农药。

1.2 调查方法

调查采用灯诱法进行,诱蚊灯使用武汉吉星医疗科技有限公司生产的“功夫小帅”LTS -M02型(24 W)光催化捕杀蚊蝇器。以长江为界,在江南和江北分别选择5种生境作为调查点,每种生境各2个调查点;每个调查点选择远离光源和避风的场所放置1 盏诱蚊灯,诱蚊灯光源离地1.5 m。日落前1 h接通电源,开启诱蚊灯诱捕成蚊,直至次日日出后1 h。取出集蚊袋后,冰箱冷冻处死,鉴定种类、性别并计数。每月上、下旬各开展1次。成蚊的分类参考《中国重要医学昆虫分类与鉴定》(陆宝麟和吴厚永,2002)对标本进行鉴定。

各生境以点位中布灯捕获蚊类的总数除以布灯数量再除以布灯夜次为蚊密度,其计算公式即为:蚊密度[只/(台·夜)]=捕获蚊虫数(只)/[布放灯数(台)·诱蚊夜数(夜)]。

1.3 分析方法

调查数据采用Excel 2010和SPSS 21.0进行处理,进行物种丰富度(S)、多样性指数(H′)、均匀度指数(J)、优势度指数(C)等生态学分析(陈浒等,2018;秦胜楠等,2018),主要公式如下:

物种丰富度:S=蚊类种群数;

Shannon-Winner多样性指数:H′=–ΣPilnPi;

Pielou均匀度指数:J=H′/ln S;

Simpson优势集中性指数:C=ΣPi2= Σ(Ni/N)2

N为全部物种的种群数量,Ni为第i个种的个体数,S为种类数。

2 结果与分析

2.1 蚊类群落结构

2007-2016年武汉市监测点的5种生境捕 蚊数大小依次为牲畜棚>农户>公园>医院>居 民区。共捕获成蚊2亚科5属8种,共计276 869只,以三带喙库蚊Culex tritaeniorhynchus和 致倦库蚊Culex pipienspallens为优势蚊种,平均相对多度为65.38%和17.42%;中华按 蚊Anopheles sinensis和骚扰阿蚊Armigeres obturbans为常见种,平均相对多度为9.61%和5.86%;白纹伊蚊Aedes albopictus、刺扰伊蚊Aedes aegypti、常型曼蚊Mansonia uniformis和二代喙库蚊Culex bitaeniorhynchus平均相对多度值较低,分别为0.50%、1.12%、0.06%和0.05%(表1)。

表1   2007-2016年武汉市不同生境蚊类数量及平均相对多度

Table 1  Species number and abundance of mosquitoes in various habitats of Wuhan city, 2007-2016

生境
Habitat
捕蚊数
Individual
不同生境蚊类平均相对多度(%)
Abundance of mosquitoes in various habitats (%)
致倦库蚊
Culex
pipiens pallens
三带喙
库蚊
Culex tritaeniorhynchus
白纹伊蚊
Aedes albopictus
中华按蚊
Anopheles sinensis
常型曼蚊
Mansonia uniformis
二带喙
库蚊
Culex bitaeniorhynchus
刺扰
伊蚊
Aedes aegypti
骚扰
阿蚊
Armigeres obturbans
居民区
Residence community
7 96297.540.292.020.150.000.000.000.00
公园
Park
12 75895.890.693.170.250.000.000.000.00
医院
Hospital
10 62298.610.081.290.030.000.000.000.00
农户
Peasant household
39 53819.4656.860.7312.160.060.062.038.65
牲畜棚
Barn
205 9894.8976.910.1910.550.060.061.116.22
合计/平均
Total/Average
276 86917.4265.380.509.610.060.051.125.86

新窗口打开| 下载CSV


2.2 蚊密度时空动态情况

2007-2016年,武汉地区成蚊3-11月活动,活跃期在4-11月,1月、2月和12月停止活动。总密度和不同年份密度季节消长趋势均呈单峰型,密度高峰出现在6月,次高峰则在5月或7月;2010年6月蚊密度达到最高值,为361.2只/台·夜(表2)。蚊密度季节消长规律明显,单因素方差分析表明,差异有统计学意义(F= 44.54,P<0.01)。

表2   武汉市2007-2016年蚊密度季节消长情况

Table 2  Seasonal fluctuations of mosquitoes density in Wuhan city, 2007-2016

年度
Year
不同月份蚊密度(只/台·夜)
Mosquito density in different months (ind./lamp·night)
1月
January
2月
February
3月
March
4月
April
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
11月
November
12月
December
20070.00.00.04.8196.3277.8152.367.833.911.84.00.0
20080.00.01.76.3150.4278.2125.966.430.58.83.40.0
20090.00.00.95.8138.3245.1163.481.558.518.90.50.0
20100.00.00.91.9199.5361.2289.1161.879.713.51.80.0
20110.00.01.43.0275.6311.9201.853.847.83.60.30.0
20120.00.00.22.7142.0214.7119.172.941.47.83.20.0
20130.00.00.74.353.2196.0131.040.129.512.03.60.0
20140.00.00.41.7106.8243.2185.837.822.15.94.10.0
20150.00.00.01.988.7190.9157.5113.193.97.01.00.0
20160.00.00.15.868.2266.5155.384.823.85.62.90.0
平均
Average
0.00.00.63.8141.9260.6168.476.944.69.62.50.0

新窗口打开| 下载CSV


致倦库蚊总密度季节消长趋势呈双峰型,三代喙库蚊、中华按蚊和骚扰阿蚊呈单峰型,与10年的成蚊平均密度季节消长曲线的趋势一致(图1)。居民区、公园和医院平均蚊密度季节消长趋势呈双峰型,密度高峰均出现在6月和9月;农户和牲畜棚呈单峰型,密度高峰均出现在6月 (图2)。牲畜棚平均密度最高,为214.6只/台·夜,其次是农户,为41.2只/台·夜,公园、居民区和医院依次为13.7、11.4和8.6只/台·夜,单因素方差分析显示,5种生境平均蚊密度存在统计学差异(F=102.20,P<0.01)。

图1

图1   2007-2016年武汉地区优势和常见蚊密度季节消长趋势

Fig. 1   Seasonal fluctuations of dominant and common species of mosquitoes in Wuhan, 2007-2016


图2

图2   2007-2016年不同生境蚊密度季节消长趋势

Fig. 2   Seasonal fluctuations of mosquitoesin different habitats, 2007-2016


2007-2016年,居民区(3.5-11.2只/台·夜)、公园(8.0-21.2只/台·夜)和医院(7.4-19.9只/台·夜)蚊密度年际消长曲线较平缓;农户和牲畜棚变化幅度较大,农户和牲畜棚年均密度最高峰均在2010年,分别为82.5只/台·夜和339.7只/台·夜,2013-2016年年均蚊密度相对较低(图3)。

图3

图3   2007-2016年不同生境蚊密度年际消长

Fig. 3   The inter annual fluctuations of mosquitoes in different habitats, 2007-2016


2.3 群落生态学参数分析

2.3.1 物种丰富度 武汉市5种生境蚊类物种生态统计结果如图4所示,2007-2016年牲畜棚的丰富度最高,每年均为8;其次是农户,除2010年的丰富度为7外,其余年份均为8;其它生境的丰富度在不同年份间存在波动,居民区在3或4,公园在2-4,医院在2或3。

图4

图4   2007-2016年不同生境蚊虫群落丰富度

Fig. 4   The richness of mosquito communitiesin different habitats, 2007-2016


2.3.2 多样性指数 2007-2016年武汉市5种生境中多样性指数最高的为农户,为1.23;其次为牲畜棚,为0.83,公园、居民区和医院依次为0.20、0.13和0.08(图5)。

图5

图5   2007-2016年不同生境蚊虫群落多样性指数

Fig. 5   The diversity index of mosquito communitiesin different habitats, 2007-2016


2.3.3 均匀度指数 2007-2016年武汉市5种生境中均匀度指数最高的为农户,为0.59;其次为牲畜棚,为0.40,公园、居民区和医院依次为0.14、0.09和0.06(图6)。

图6

图6   2007-2016年不同生境蚊虫群落均匀度指数

Fig. 6   The evenness index of mosquito communitiesin different habitats, 2007-2016


2.3.4 优势度指数 2007-2016年武汉市5种生境的优势度指数为医院>居民区>公园>牲畜棚>农户,依次为0.97、0.95、0.92、0.61、0.38(图7)。

图7

图7   2007-2016年不同生境蚊虫群落优势度指数

Fig. 7   The dominance index of mosquito communitiesin different habitats, 2007-2016


3 讨论

蚊虫是我国虫媒传染病的主要传播媒介之一,可传播登革热、疟疾、乙脑、黄热病等疾病(Xia et al.,2018)。由于我国生态环境复杂多样、物种丰富,蚊类种群具有种间种内差异大的特点(付文博和陈斌,2015),本研究于2007-2016年应用灯诱法对武汉地区居民区、公园、医院、农户、牲畜棚5种生境分别进行了连续的蚊类群落结构、时空动态和多样性方面的基础研究,为当地复杂多样的地理气候和生境条件下的蚊类及其相关传播疾病的综合防治奠定了基础。

2007-2016年,本研究共获得蚊虫标本 276 869只,经形态学鉴定,隶属于按蚊亚科和库蚊亚科,分属于按蚊属、伊蚊属、阿蚊属、骚扰蚊属和库蚊属5属共8种,以三带喙库蚊和致倦库蚊为优势蚊种,中华按蚊和骚扰阿蚊为本地区常见蚊种。这与江苏(马桢红等,2018)的报道结果相似,与云南(岳仁苹等,2016)、山东(陆华等,2018)等地的报道结果有明显差异,这可能是由地域的纬度、海拔梯度等环境条件差异导致的。水平地带性与垂直地带性是同源的,它们所依赖的基础,即是对于系统所输入的能量状况以及水分条件的影响(龚正达等,2007)。这种地域差异包含了光照、温度、湿度以及其它各种环境因子的综合效应,因此产生了不同的蚊类种群构成。

武汉地区蚊总密度和季节消长趋势均呈单峰型,成蚊3-11月活动,1月、2月和12月停止活动,每年4月份起蚊类繁殖速度加快,6月份到达密度高峰,这可能是由于武汉地处江汉平原东部,属亚热带季风性湿润气候区,四季分明,春季更适合蚊类孳生繁衍,冬季蚊类停止繁殖;建议应从春季气温初步回升即采取清除积水消除蚊虫孳生地,同时辅助使用化学、生物防治等杀灭成蚊。同时,本研究表明不同生境之间的蚊类群落结构、密度时空动态及多样性方面有城乡差异。城镇区域的居民区、公园绿地、医院生境优势蚊种均为致倦库蚊,而农村区域的农户、牲畜棚生境优势蚊种则均为三带喙库蚊;农户、牲畜棚中的蚊密度、蚊类丰富度、均匀度指数均明显高于居民区、公园和医院等生境,而优势度指数则正好相反,公园、居民区和医院等生境相对较高。造成这种城乡蚊类生态学差异的原因可能是城镇区域人类大规模生产、生活活动的长期干扰和选择下,破坏了周围生境的天然形态,导致植被、水域等蚊类孳生场所的异质性降低,蚊类群落的丰富度和种群稳定性相应降低;而人类对农村区域的建设和破坏较少,适宜更多蚊种的孳生,且在农村区的农耕活动(如农田灌溉、畜牧养殖等)也为某些如农田、沟渠或泥潭的孳生蚊类增加了大量的孳生地及栖息场所,导致优势蚊种突出(葛军旗等,2008)。

总之,蚊类传染病媒的防控和蚊类防治工作需根据不同季节和不同生境蚊类种群分布特征和蚊类的时空动态制定科学的防控方案。蚊类防治以处理孳生地的物理防治为主要方法,如对于居民区、公园和医院等生境应加强小型积水如缸、罐、盆、轮胎等的清理,对于农户、牲畜棚等生境应加强沟渠、池塘、河道等大中型水体的治理,充分利用蚊类种群生态的时空分布特征,建立有针对性的综合防制机制;使用苏云金芽孢杆菌、球形芽孢杆菌等微生物杀虫剂为次要防治方法;适量使用拟除虫菊酯、氨基甲酸酯和有机磷类具有选择性的杀虫剂是蚊类防治的最后一道防线,由于成蚊繁殖能力较强,不同杀虫机理的杀虫剂需轮换使用。

参考文献

Chen H, Jing DC, Lin DD, Wang PJ, Zhou Z , 2018.

Change of community structure of soil mites in the early stage of ecological restoration in moderate rocky desertification of Karst area, Guizhou province, China

Chinese Journal of Applied Ecology, 29(12):4152-4164.

DOI:10.13287/j.1001-9332.201812.032      URL     PMID:30584744      [本文引用: 1]

The monitoring of soil mite community is an important part of ecological restoration monitoring. Changes of community structure in soil mites could reflect effects of ecological restoration in degraded environment. In different seasons of 2014, we investigated soil mites in the moderate rocky desertification ecological restoration area of Chaoying small watershed in Bijie City, Guizhou Pro-vince. We compared the community structure of soil mites in native Quercus variabilis forest and moderate rocky desertification area. The results showed that soil mites in ecological restoration area of moderate rocky desertification belonged to three orders, 35 families, and 58 genera, with Haploze-tes and Vilhenabates being the dominant genera. Higher number of genera, abundance, and indivi-dual densities were found in upper soil layer. The community structure of predatory Gamasina mites was mainly r-selected, and that of Oribatida mites was mainly Poronota (P-type). In the moderate rocky desertification ecological restoration area, both the abundance and individual density of soil mites were higher than that in moderate rocky desertification area and Q. variabilis forest, while the number of genera, diversity index and richness index were higher than that in moderate rocky desertification area, but lower than that in Q. variabilis forest. On the basis of the control area, 32 genera of mites were recovered and added, accounting for 55.2% of the total number of mite genera in the restoration area. In the whole study area, the number of mite genera were significantly correlated with soil available potassium, richness index, and organic carbon content. The number of indivi-duals, individual density, diversity index, richness index separately had significant correlations with the content of available potassium. The richness index had significant correlation with the content of organic matter. Our results suggested that the vegetation restoration of rocky desertification was beneficial to the restoration of mite community and improvement of soil environment, and that the dominant groups, new groups, and restoration groups of soil mites could indicate environment changes. However, the relationships between soil mite community structure and vegetation, soil physical and chemical factors in the restoration area remained to be further studied.

[ 陈浒, 金道超, 林丹丹, 王鹏举, 周政 , 2018.

中度石漠化生态修复初期土壤螨类群落结构变化

应用生态学报, 29(12):4152-4164.]

PMID:30584744      [本文引用: 1]

Cui CL, Chen JJ, Wang SB , 2015.

Genetic control and paratransgenesis of mosquito-borne diseases

Chinese Journal of Applied Entomology, 55(2):294-303.

[本文引用: 1]

[ 崔春来, 陈晶晶, 王四宝 , 2015.

蚊媒传染病的遗传控制和共生控制

应用昆虫学报, 52(5):1061-1071.]

[本文引用: 1]

Fu WB, Chen B , 2015.

New advances in classification of mosquitoes in China

Journal of Chongqing Normal University (Natural Science), 32(1):28-34.

[本文引用: 1]

[ 付文博, 陈斌 , 2015.

中国蚊科分类研究新进展

重庆师范大学学报(自然科学版), 32(1):28-34.]

[本文引用: 1]

Ge JQ, Sun XH, Gong ZD, Liang GD, Li JH, Feng XM, Zhang LY, Li B, Fu SH , 2008.

Spatial distribution pattern of mosquito diversity in residential area along Lancang River in a natural protected territory, “Three Parallel River Region” of Yunnan Province, China

Biodiversity Science, 16(1):24-33.

DOI:10.3724/SP.J.1003.2008.07128      URL     [本文引用: 1]

The Three Parallel River Region is an epicentre of Chinese biodiversity, which is reputed as one of the world’s 25 major “biodiversity hotspots”. However, few study has been done on the notorious mosquitoes in this area. We surveyed the mosquitoes in relation to latitude and elevation along the Lancang River (24°–30°N, 1,000–3,500 m asl). Adult mosquito samples were captured using UV light traps from July to September 2005 in the mountainous residential areas. A total of 76,458 adult mosquitoes were collected and identified as 36 species of 5 genera in 2 subfamilies. The results showed: (1) species richness gradually de-creased with the increasing latitude but showed a single-peak curve pattern along the altitudinal gradient; (2) α diversity decreased first and then increased slightly along the increasing latitude, showing a wave-like curve along the altitudinal gradient; (3) β diversity (Cody index) was higher in the transitional climate zones, and the same pattern was found along the altitudinal gradient, which reflected the influence of geographical environment and climate on the species composition, fauna and diversity distribution pattern of mosquitoes; (4) Mosquito species were classified into three main ecological types by cluster analysis, namely Oriental fauna, Palaearctic fauna, and the transitional fauna between them; and (5) the result from canonical corre-spondence analysis indicated that precipitation is the key factor influencing spatial distribution pattern of mosquito diversity in the study area.

[ 葛军旗, 孙肖红, 龚正达, 梁国栋, 李镜辉, 冯星明, 张丽云, 李斌, 付士红 , 2008.

“三江并流”自然遗产地澜沧江流域居民区蚊类多样性的空间分布格局

生物多样性, 16(1):24-33.]

[本文引用: 1]

Gong WM, Zhang L, Wang S, Liu ZQ , 2015.

Population dynamics and community structure of predatory insects in wheat fields

Chinese Journal of Applied Entomology, 52(6):1444-1450.

[本文引用: 1]

[ 公维敏, 张龙, 王珊, 刘志琦 , 2015.

麦田捕食性昆虫群落、结构与动态研究

应用昆虫学报, 52(6):1444-1450.]

[本文引用: 1]

Gong ZD, Zhang LY, Duan XD, Feng XG, Ge JQ, Li DM, Liu QY , 2007.

Species richness and fauna of fleas along a latitudinal gradient in the three Parallel Rivers landscape, China

Biodiversity Science, 15(1):61-69.

DOI:10.1360/biodiv.060150      URL     [本文引用: 1]

β diversity showed two peaks, indicating the transition and transformation of flea species composition and distribution along different gradients, and thus was associated with climate and environmental change. (5) The horizontal patterns of species richness and fauna were simi-lar to the vertical pattern in the Hengduan Mountains. (6) The zones from 25º to 27ºN were the center of dif-ferentiation and overlap of the two realms. Because of the edge effect and complex landscape, the families, genera, species and endemic species of fleas here all showed high diversity, suggesting that this may be the core areas for diversity conservation, distribution and differentiation in China. We conclude that the main factors affecting flea diversity in the Hengduan Mountains are the edge effect in this transitional area of fauna and flora, and heterogeneity of climate, geographical condition and vegetation.]]>

[ 龚正达, 张丽云, 段兴德, 冯锡光, 葛军旗, 栗冬梅, 刘起勇 , 2007.

中国“三江并流”纵谷地蚤类丰富度与区系沿纬度梯度的水平分布格局

生物多样性, 15(1):61-69.]

[本文引用: 1]

Guo WP, Tian JH, Lin XD, Ni XB, Chen XP, Liao Y, Yang SY, Dumler JS, Holmes EC, Zhang YZ , 2016.

Extensive genetic diversity of Rickettsiales bacteria in multiplemosquito species

Science Report, doi: 10.1038/srep38770.

URL     PMID:14264651      [本文引用: 1]

Jiang WX, Jia XH, Zhou SC, Li FQ, Tang T, Cai QH , 2009.

Seasonal dynamics of mcrozoobenthos community structure in Xiangxi River

Chinese Journal of Applied Ecology, 20(4):923-928.

URL     [本文引用: 1]

River, the individuals of macrozoobenthos in the River were quantitatively moni tored. A total of 197 taxa belonging to 6 class and 68 families were collected, among which, Baetis spp., Epeorus spp., and Nemoura spp. were the do minant group s, and their compositions varied with seasons. The macrozoobenthos community was most complicated in winter, followed by in spring and autumn, and the simplest in summer. Gather-collector was the main component of functional feeding groups in Xiangxi River system, followed by scraper, predator, and filter-collector, while shredder only accounted for a small part. Canonical correspondence analysi s showed that the factors affecting the macrozoobenthos community were dissimila r among seasons. In summer and autumn, nutrients had greater effects; and in all seasons, water depth had definite effects.]]>

[ 蒋万祥, 贾兴焕, 周淑婵, 李凤清, 唐涛, 蔡庆华 , 2009.

香溪河大型底栖动物群落结构季节动态

应用生态学报, 20(4):923-928.]

[本文引用: 1]

Khader SZA, Ahmed SSZ, Venkatesh KP, Chinnaperumal K, Nayaka S , 2018.

Larvicidal potential of selected indigenous lichens against three mosquito species-culexquinquefasciatus, Aedes aegypti and Anopheles stephensi

Chinese Herbal Medicines, 10(2):152-156.

DOI:10.1016/j.chmed.2018.03.002      URL     [本文引用: 1]

Lu BL, Wu HY , 2002. Classfication and Identification of Important Medical Insects of China. Zhenzhou: Henan Science and Technnology Publishing Press. 1-67.

[本文引用: 1]

[ 陆宝麟, 吴厚永 , 2002. 中国重要医学昆虫分类与鉴别. 郑州: 河南科学技术出版社. 1-67.]

[本文引用: 1]

Lu H, Hou PQ, Zhao AH, Zhao Y, Fan AP, Qang XJ, Jing X , 2018.

Analysis on the diversity of mosquito species in Mount Tai scenic spots in Shandong province

Chinese Journal of Vector Biology and Control, 29(4):45-47.

[本文引用: 1]

[ 陆华, 侯佩强, 赵爱华, 赵勇, 樊爱平, 马德珍, 王学军, 景晓 , 2018.

山东省泰山风景区蚊类多样性调查分析

中国媒介生物学及控制杂志, 29(4):45-47.]

[本文引用: 1]

Ma ZH, Chen XL, Gu DA , 2018.

Characteristics of community structure and species distribution of mosquitoes in Suzhou city of Jiangsu province, 2011-2015

Chinese Journal of Vector Biology and Control, 29(3):271-273.

[本文引用: 2]

[ 马桢红, 陈学良, 顾灯安 , 2018.

江苏省苏州市2011-2015年蚊类群落结构及其分布特征

中国媒介生物学及控制杂志, 29(3):271-273.]

[本文引用: 2]

Meng X, Ouyang GC, Liu H, Huang SS, Guo MF , 2015.

Diversity and temporal dynamics of a litchi orchard arthropod community in Guangzhou

Chinese Journal of Applied Entomology, 52(4):1023-1031.

[本文引用: 1]

[ 孟翔, 欧阳革成, 刘慧, 黄寿山, 郭明昉 , 2015.

广州荔枝园节肢动物群落多样性及时空动态

应用昆虫学报, 52(4):1023-1031.]

[本文引用: 1]

Mi HB, Cao Z, Zhang F, Zhang SZ, Liu TX , 2014.

Community structure and population dynamics of predacious arthropods in peach orchards

Chinese Journal of Applied Entomology, 51(1):80-89.

[本文引用: 1]

[ 米宏彬, 曹祝, 张帆, 张世泽, 刘同先 , 2014.

桃园捕食性节肢动物群落结构及动态研究

应用昆虫学报, 51(1):80-89.]

[本文引用: 1]

Qin SN, Guan XZ, Ju Q, Li X, Jiang XJ, Du L, Shi CR, Qu MJ , 2018.

The structure and diversity of insect community in peanut fields in Laixi, Shangdong province

Chinese Journal of Applied Entomology, 55(2):294-303.

[本文引用: 1]

[ 秦胜楠, 管晓志, 鞠倩, 李晓, 姜晓静, 杜龙, 石程仁, 曲明静 , 2018.

山东莱西花生产区昆虫群落基本结构及多样性研究

应用昆虫学报, 55(2):294-303.]

[本文引用: 1]

Xia H, Wang Y, Atoni E, Zhang B, Yuan Z , 2018.

Mosquito-associated virusesin China

Virologica Sinica, 33(1):5-20.

URL     PMID:29532388      [本文引用: 1]

Xiao JP, Cao M, Li QG, Zhang JS, Li X , 2019.

Diversity and seasonal dynamics of bird communities in the Yilong lake national wetland park

Chinese Journal of Wildlife, 40(1):109-115.

[本文引用: 1]

[ 肖剑平, 曹明, 李桥光, 张健嵩, 李旭 , 2019.

异龙湖国家湿地公园鸟类群落多样性及其季节动态

野生动物学报, 40(1):109-115.]

[本文引用: 1]

Yue RP, Gong ZD, Wang HB, Ge JQ, Zhang LY, Zhou HN , 2016.

Spatial distribution pattern of mosquitoes γ- diversity and relationship with environmental factors of residential area along Lancangriver in Yunnan province

Chinese Journal of Vector Biology and Control, 27(3):220-227.

DOI:10.11853/j.issn.1003.8280.2016.03.003      URL     [本文引用: 1]

Objective To investigate the relationship between the basic law of large-scale spatial distribution pattern of mosquitoes and the main ecological factors affecting their distribution in the residential area of Lancang river of Yunnan province in China. Methods We surveyed the mosquitoes in relation to latitude and elevation along the Lancang river (21°-30° N, 500-3 500 m). Adult mosquito samples were captured using UV light traps in the mountainous residential areas. Results (1) A total of 180 099 adult mosquitoes were collected and identified as 46 species of 7 genera in 2 subfamilies. Among them were the Anopheles 16 species, Culex 15 specie, Aedes 11 species, Uranotaenia, Armigeres, Mansonia, and Culiseta 1 species respectively; (2) γ-diversity (Species richness) of mosquito showed ladder-like downward trend with the increasing latitude and along the altitudinal gradient, species richness showed a gradual downward trend; (3) β-diversity (Cody index) showed a bimodal distribution pattern with the increasing latitude, the two peaks were located at position 24°-25° N and 27°-28° N; along the altitudinal gradient, showed increase at first and then gradual decrease, the highest point was located at 1 000-1 500 m; (4) The result of cluster analysis showed that mosquito species were classified into three main ecological types by cluster analysis, namely Oriental fauna, Palaearctic fauna, and the transitional fauna between them; (5) Mosquito species richness with latitude, elevation, temperature and rainfall in the multiple correlation analysis showed that a negative correlation between the number of mosquito species with latitude and elevation, a positive correlation between with the temperature and rainfall. Conclusion Influenced by factors such as geographic and climatic conditions, the spatial distribution pattern of γ-diversity in the Lancang river basin mosquito populations decreased with increased latitude and altitude, and the general trend of increase with the increase of temperature and rainfall. Among them, the latitude as geographical factors has more prominent impact on the mosquito diversity, and the precipitation as a climatic factor in mosquito diversity plays a leading role.]]>

[ 岳仁苹, 龚正达, 王海波, 葛军旗, 张丽云, 周红宁 , 2016.

云南省澜沧江流域居民区蚊类γ-多样性空间梯度格局与环境因素关系

中国媒介生物学及控制杂志, 27(3):220-227.]

[本文引用: 1]

Zhang JX, Gong ZD , 2008.

Overview of mosquito research in China

Chinese Journal of Vector Biology and Control, 19(6):595-599.

URL     [本文引用: 1]

[ 张菊仙, 龚正达 , 2008.

中国蚊类研究进展

中国媒介生物学及控制杂志, 19(6):595-599.]

[本文引用: 1]

Zhang JX, Gong ZD, Li SD, Zhang LY, Li ZH , 2008.

Spatial distribution pattern of mosquito diversity in residential area along Nu River in a natural protected territory, “Three Parallel River Region”of Yunnan Province, China

Acta Parasitologica et Medica Entomologica Sinica, 15(4):24-33.

[本文引用: 1]

[ 张菊仙, 龚正达, 李四全, 张丽云, 李璋鸿 , 2008.

“三江并流”自然遗产地怒江流域居民区蚊类多样性的空间分布格局

寄生虫与医学昆虫学报, 15(4):24-33.]

[本文引用: 1]

Zhang XM, Li Q, Chen GH, Shi AX, Song JX , 2015.

Fuzzy clustering analysis of insect community structure in a Zanthoxylum bungeanum garden

Chinese Journal of Applied Entomology, 52(1):237-248.

[本文引用: 1]

[ 张晓明, 李强, 陈国华, 石安宪, 宋家雄 , 2015.

花椒园昆虫群落结构及时间动态的聚类分析

应用昆虫学报, 52(1):237-248.]

[本文引用: 1]

/