甘薯小象甲在江苏的潜在入侵风险评估 *

应用昆虫学报, 2020, 57(4): 963-972 doi: 10.7679/j.issn.2095-1353.2020.099

研究论文

甘薯小象甲在江苏的潜在入侵风险评估 *

高鹏,1,**, 胡婕2, 龚伟荣,2,***, 杜予州,1,***

1. 扬州大学园艺与植物保护学院,扬州大学应用昆虫研究所,扬州 225009

2. 江苏省植物保护植物检疫站,南京 210036

Projected potential range and risk analysis of the sweet potato weevil, Cylas formicarius (Fabricius), in Jiangsu province

GAO Peng,1,**, HU Jie2, GONG Wei-Rong,2,***, DU Yu-Zhou,1,***

1. School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Plant Protection and Plant Quarantine Station, Nanjing 210036, China

通讯作者: *** E-mail:yzdu@yzu.edu.cn;E-mail:zj@jsagri.gov.cn

**第一作者First author,E-mail: 1628221665@qq.com

收稿日期: 2020-05-15   接受日期: 2020-06-22   网络出版日期: 2020-07-27

基金资助: *江苏省科技项目.  BE2005348
江苏省科技项目.  BE2014410

Corresponding authors: *** E-mail:yzdu@yzu.edu.cn;E-mail:zj@jsagri.gov.cn

Received: 2020-05-15   Accepted: 2020-06-22   Online: 2020-07-27

摘要

【目的】 为了研究甘薯小象甲Cylas formicarius (Fabricius)传入江苏及其在该地区扩散的风险性。【方法】 应用生物气候相似原理分析甘薯小象甲在江苏的潜在适生性。根据国际植物检疫措施标准(ISPM)规定的有害生物风险性分析(PRA)程序,利用相关风险性分析模型,从国内和江苏省内分布状况、潜在的危害性、被害栽培种的经济重要性、传入扩散及定殖的可能性以及风险性管理难度5个方面对甘薯小象甲在江苏的风险性进行定性和定量分析。【结果】 甘薯小象甲综合风险值R为2.26,且江苏北纬34.5°以南地区为甘薯小象甲的潜在季节性发生区,北纬34.5°以北地区为潜在零星发生区,江苏不存在非适生区和周年发生区。【结论】 甘薯小象甲符合检疫性有害生物的条件,江苏是其潜在适生区,据此提出了2条相关风险管理备选对策,以期使风险减少到可接受的水平。

关键词: 甘薯小象甲 ; 有害生物风险分析 ; 风险性管理 ; 中国江苏

Abstract

[Objectives] To investigate the risk of introducing and spreading the alien invasive sweet potato weevil, Cylas formicarius (Fabricius) in Jiangsu province. [Methods] The principle of agroclimatic analogy was used to analyze the suitability of areas for C. formicarius in Jiangsu. Based on the pest risk analysis (PRA) procedure according to international standards for pest measurements (ISPM) and the relevant PRA model, this study based the quantitative and qualitative analysis of the risk of C. formicarius establishing in Jiangsu on five factors; the distribution of C. formicarius in China and Jiangsu, the potential damage that could be caused by this pest, the economic importance of damaged host plants, the risk of establishment and spread, and the difficulty of management. [Results] The C. formicarius synthetic risk index is 2.26. In addition, C. formicarius occurs seasonally south of 34.5°N in Jiangsu but only sporadically north of this latitude. It should be noted that there is currently no part of Jiangsu that is absolutely unsuitable for C. formicarius or where the species occurs year-round. [Conclusion] C. formicarius meets the requirements to be classified as quarantinable pest in China, and Jiangsu is a potential area where this species could establish. Based on this, two risk management strategies are proposed to reduce the risk of C. formicarius establishing in Jiangsu to an acceptable level.

Keywords: Cylas formicarius (Fabricius) ; pest risk analysis ; risk management ; Jiangsu province

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高鹏, 胡婕, 龚伟荣, 杜予州. 甘薯小象甲在江苏的潜在入侵风险评估 *. 应用昆虫学报[J], 2020, 57(4): 963-972 doi:10.7679/j.issn.2095-1353.2020.099

GAO Peng, HU Jie, GONG Wei-Rong, DU Yu-Zhou. Projected potential range and risk analysis of the sweet potato weevil, Cylas formicarius (Fabricius), in Jiangsu province. Chinese Journal of Applied Entomology[J], 2020, 57(4): 963-972 doi:10.7679/j.issn.2095-1353.2020.099

甘薯小象甲Cylas formicarius (Fabricius),又称甘薯蚁象,俗名甘薯小象鼻虫、番薯臭虫、红头娘,英文名Sweet potato weevil。甘薯小象甲起源于印度和马来西亚,19世纪扩散至非洲(Chalfant,1990;Wolfe,1991;Brookes et al.,2019),目前广泛分布于热带和亚热带甘薯产区(图1),其中包括中国、韩国、日本、菲律宾、越南、老挝、柬埔寨、泰国、马来西亚、新加坡、印度、马达加斯加、波多黎各、南非、委内瑞拉、美国、澳大利亚、新喀里多尼亚、圣基茨和尼维斯 (GBIF,2020)。在亚洲地区,通过甘薯小象甲的地理种群系统发育研究可知,该虫的分化主要有2个分支,即南亚的印度地区分支和东亚的亚洲东部分支,亚洲东部分支又包括了东南部与东北部2个亚支,其中东北亚亚支包括我国台湾、浙江、广东、福建和重庆地区,而云南地区检测为东南亚亚支(Kawamura et al.,2007;徐可成等,2017)。亚洲地区的甘薯小象甲是随甘薯的调运自东南向西北扩散,并于19世纪传入中国(于海滨等,2011)。目前该虫在我国长江以南的多个省、市、自治区均有分布(赵养昌等,1974;洪晓月等,2003;农林病虫防治网,2008)。我国于1957年将甘薯小象甲列入《国内植物检疫对象名单》,一直到1983年才从《农业植物检疫对象和应施检疫的植物、植物产品名单》去除(陈生斗,2000)。江苏省于1985年将其列入江苏省农业植物检疫对象补充名单,在随后的2006年和2009年修订的《江苏省农业植物检疫性有害生物补充名单》中仍然将甘薯小象甲保留(刘刚,2010)。

图1

图1   甘薯小象甲世界分布图(https://www.gbif.org/

Fig. 1   Distribution of Cylas formicarius in the world(https://www.gbif.org/


甘薯小象甲是寡食性昆虫,寄主为旋花科(Convolvulaceae)植物。目前已报道取食旋花科的番薯属(Ipomoea)、小牵牛属(Jacquemontia)、山牵牛属(Thunbergia)、打碗花属(Calystegia)、菟丝子属(Cuscuta)、马蹄金属(Dichondra)、鱼黄草属(Merremia)和腺叶藤属(Stictocardia)等8属、50余种植物,其中以取食番薯属中的栽培种甘薯为主(Loebenstein and Thottappilly,2009;于海滨等,2010;黄立飞等,2011);一些番薯属的杂草和伞形科(Umbelliferae)的胡萝卜Dacus carota L.、十字花科(Cruciferae)的小萝卜Raphanus sativus L.等可作为其转主寄主,但雌虫不能在小萝卜上产卵完成其生活史(Muruvanda et al.,1986)。

甘薯小象甲是我国甘薯上的一种重要害虫,可对甘薯的品质和产量造成极大的影响,尤其是在我国南方及长江中下游甘薯种植区(袁锋,2001;雷剑等,2018)。生长和储藏期的甘薯,均可遭受其为害,成虫通过取食薯蔓、薯柄及土壤上部薯块,致使植株发黄从而影响生长,并且还会对贮藏的甘薯造成危害,即在薯块表面蛀出小孔。幼虫在薯蔓及薯块内部取食,形成隧道,并且遭受危害的薯块会产生一系列有害的化学物质,对甘薯的品质影响很大(Nottingham et al.,1987;周桂乐,2010)。

在外来或检疫性有害生物的适生性分析中,常常利用气候相似距原理、有效积温、发育起点温度与气候资料结合的方法(蒋小龙等,2001;鞠瑞亭等,2008;史丽等,2017)。本文拟基于这一方法对甘薯小象甲在江苏地区的潜在适生区进行分析。此外,依据FAO/ISPM规定的有害生物风险性分析(PRA)程序(FAO/IPPC,2001;杜予州等,2005),对甘薯小象甲在江苏的传入和扩散进行风险分析,以达到为预防和控制该虫的传入扩散定殖制定相关的检疫政策及法律法规提供理论依据。

1 材料与方法

1.1 生物学及气象数据材料

我国甘薯小象甲从南至北发生代数递减,发生世代最多的是云南,1年9代,其次中国台湾、广东地区,1年6-8代,然后是福建、广西,1年仍可发生5-6代,浙江一带每年仅发生3-4代(吴宝巨,2007;黄立飞等,2011)。甘薯小象甲个体之间各阶段发育差异较大,卵的发育历期一般为5-14 d,幼虫期17-31 d,蛹期6-14 d,而越冬代长达32-39 d。成虫寿命2个月左右,最长超过12个月。1-2个月即可完成1个世代,世代重叠。研究表明,在20、23、25、28、31 ℃的温度梯度下甘薯小象甲均能完成生长发育,完成1个世代分别需要79.75、57.01、43.36、33.10、31.90 d。不同发育阶段发育起点温度和所需有效积温都不同,详见表1王容燕等,2016)。

表1   甘薯小象甲各虫态发育起点温度及有效积温

Table 1  The threshold and effective accumulative temperatures of different developmental stage of Cylas formicarius

不同虫态
Developmental stages
发育起点温度(℃)
Threshold temperature (℃)
有效积温(日·度)
Effective accumulated temperature (degree·days)
卵Egg11.44118.07
幼虫Larva12.37233.42
蛹Pupa14.4278.41
成虫产卵前期Preoviposition period17.4472.87
全生育期Whole growth period13.58515.77

新窗口打开| 下载CSV


甘薯小象甲成虫具避光性,白天躲藏于藤蔓枯叶下隐蔽处,选择在清晨和傍晚活动。成虫爬行能力强,飞翔能力弱,可在短距离内扩散,一般仅能飞3-6 m,若借助风力则可达2 km以上,成虫还具假死性和趋甜性,耐饥力强,可延续5个月左右(徐三勤等,2015)。成虫羽化初期体乳白色而软,藏在薯块内,3-5 d后,色变深,躯干变硬,并爬出开始进行取食活动。羽化后5-7 d,开始交配,可多次交配,交配后2-10 d开始产卵。雌成虫偏好在甘薯表皮上产卵,其先在薯块表面取食出小洞,然后在小洞中产卵,并用排泄物将洞口封住。一般情况下一孔1粒卵,也会出现一孔2-3粒。产卵期15-115 d,种群密度低时,雌成虫平均产卵11.5-87.5粒/头,种群密度高时,雌成虫平均产卵151.7-170.6粒/头(Mullen and Cao,1982)。此外,其产卵最适温度为27-32 ℃,但薯窖温度仅在9-14 ℃,成虫仍可产卵,且虫卵正常发育(王际方,2010)。甘薯小象甲幼虫孵出后在薯蔓和薯块内蛀食出弯曲的隧道,虫体后方留下白色或褐色虫粪。幼虫在薯蔓内蛀食,向下钻蛀形成直隧道,造成被害处膨大,部分还可由此蛀入薯块。单个薯蔓隧道中大多仅有l头幼虫,而单个薯块中少则有1-2头,多则达100头以上。甘薯幼虫始终都在甘薯薯蔓和薯块内取食,老熟后化蛹。通常甘薯小象甲幼虫、蛹、成虫皆可越冬,其中幼虫和蛹居多,无明显生理滞育期,很少以卵越冬(黄邦侃等,1981)。成虫可在薯窖中、砖石土缝下和田间杂草上越冬,幼虫和蛹仅在田间或窖内的薯物内部越冬。此外,在高温干燥的旱季,甘薯小象甲更容易大暴发。

此外,我们根据江苏2010-2019年的气象资料(天气预报,2020)(https://tianqi.911cha.com)及甘薯小象甲全世代发育起点温度(表1),整理出全省13个地级市近10年的平均有效积温,并预测甘薯小象甲在13个地级市的潜在发生世代数(表2),为该虫在江苏的潜在适生区预测提供依据。

表2   江苏各地级市甘薯小象甲有效积温及预测世代数

Table 2  Effective accumulated temperature and predicted generations of Cylas formicarius in Jiangsu province

地级市
Cities
有效日数 (d)
Effective days (d)
有效积温(日·度)
Effective accumulated temperature(degree·days)
预测世代数
Predicted generations
南京Nanjing189.102 150.754.17
无锡Wuxi200.701 957.353.80
徐州Xuzhou183.502 202.884.27
常州Changzhou195.701 901.913.69
苏州Suzhou200.601 965.893.81
南通Nantong187.702 083.684.04
连云港Lianyungang176.501 783.783.46
淮安Huai’an179.302 000.573.88
盐城Yancheng175.601 931.753.75
扬州Yangzhou190.302 265.524.39
镇江Zhenjiang188.302 111.524.09
泰州Taizhou182.401 994.203.87
宿迁Suqian172.801 973.603.83

新窗口打开| 下载CSV


1.2 在江苏的潜在适生性分析方法

利用气候相似距原理,将有效积温、发育起点温度与气候资料相结合,对甘薯小象甲在江苏的潜在适生性情况进行分析预测。据文献报道,目前全世界甘薯小象甲分布区域的最北界位于美国的卡罗来纳州东海岸区(North Carolina),其北纬34.5°;而在亚洲分布的最北界是日本高知县(Koch)的室户(Muroto),其北纬31°,这两个地区的1月平均气温均为15-16 ℃,7月平均温度为28-30 ℃(Jansson et al.,1987;Kandori et al.,2006);此外,甘薯小象甲能短期耐0 ℃低温,且最低可达–3 ℃ (王际方,2010)。因此,北纬34.5°以南地区适宜于甘薯小象甲的越冬、生长发育及繁殖,因此以该纬度作为甘薯小象甲的潜在适生区划分标准。此外,根据表1,甘薯小象甲卵、幼虫、蛹和成虫的发育起点温度分别为11.44、12.37、14.42和17.44 ℃,结合江苏省的温度(表2)和甘薯种植情况,对甘薯小象甲在江苏省的潜在适生范围划分。

1.3 风险指标的确定

查阅甘薯小象甲文献资料,从该虫在中国及江苏的分布情况、潜在的危害性、受害作物的经济重要性、传播扩散的可能性、危险性管理难度5个方面综合分析甘薯小象甲在江苏的风险性。同时,参照蒋青等(1995)提出的多指标综合评估风险性的方法,结合江苏的实际情况,建立甘薯小象甲在江苏的风险性评估体系,量化和赋分相关指标,并通过以下几个公式计算多项指标(Pi)和综合风险值(R)。省内分布状况:即P1=P11;潜在危害性:P2=0.6P21+0.2P22+0.2P23;受害寄主的经济重要性:P3=Max(P31, P32, P33);传播扩散的可能性:${{P}_{4}}=\sqrt[5]{{{P}_{41}}\times {{P}_{42}}\times {{P}_{43}}\times {{P}_{44}}\times {{P}_{45}}}$;危险性管理难度:P5=(P51+P52+P53)/3;综合风险性:$R=\sqrt[5]{{{P}_{1}}\times {{P}_{2}}\times {{P}_{3}}\times {{P}_{4}}\times {{P}_{5}}}$。

2 结果与分析

2.1 在江苏的潜在适生性分析

根据江苏的分布纬度,甘薯小象甲卵、幼虫、蛹和成虫的发育起点温度,结合江苏省的温度、湿度和甘薯种植情况,对甘薯小象甲在江苏省的潜在适生范围划分如下:

(1)非适生区:江苏各地区年均温高于15 ℃,月最低温不低于–3 ℃,故江苏地区不存在甘薯小象甲的潜在非适生区。

(2)周年发生区:江苏各地区冬季室外温度都在10 ℃以下,低于甘薯小象甲各个发育阶段的发育起点温度,没有虫态可以完成发育。因此,江苏也没有甘薯小象甲的潜在周年发生区。

(3)季节性发生区:目前已知甘薯小象甲的分布北界是北纬34.5°。在江苏,除北部少数地区外,大部分地区均在北纬34.5°以内,而且江苏1月份的日均气温在0-8 ℃,大部分地区均能使甘薯小象甲安全越冬;7月份的温度在20- 37 ℃,11月份的温度也在11-15 ℃,因此夏、秋季可为甘薯小象甲提供生长发育的温度条件,因此江苏北纬34.5°以南地区应属于甘薯小象甲的潜在季节性发生区。

(4)零星发生区:在江苏,徐州地区的沛县、丰县以及连云港地区的赣榆县和东海县的部分地区在北纬34.5°以北,且1月日平均可达–3 ℃,因此甘薯小象甲在这些地区的野外越冬较为困难;但这些地区的7月气温在20-36 ℃,适宜甘薯小象甲的生长发育,因此将这些地区划为甘薯小象甲的潜在零星发生区。

2.2 甘薯小象甲的风险性分析

2.2.1 江苏潜在发生的风险性 中国及江苏的分布情况(P1)。根据有关资料报道,甘薯小象甲主要分布在我国台湾、福建、浙江、江西、湖南、海南、广东、广西等东南沿海及南方地区,在西南地区的重庆、四川、贵州、云南也有分布,但未见该虫在我国北方分布的报道。此外,根据江苏省植保站多年的监测,至今未发现江苏有甘薯小象甲分布及发生危害的报道,为此自1985年至今一直将甘薯小象甲列入江苏省检疫性有害生物补充名单。

潜在的危害性(P2)。甘薯小象甲在我国一年可发生3-9代,世代重叠,3月下旬开始危害,持续至11月上旬,又以7-10月份为害最严重。江苏省甘薯小象甲潜在发生代数在3-4代,少数地去可能发生5代(表2),潜在发生时间可能在4月至11月。成虫取食甘薯营养组织;卵产于甘薯内,孵化为幼虫后取食甘薯薯块,不仅影响薯块的生长,产生的排泄物还会充塞潜道,引发病原菌浸染腐烂霉变。

受害作物的经济重要性(P3)。甘薯小象甲为寡食性昆虫,寄主植物50余种,主要危害甘薯这一经济作物。其在广东、广西、福建和浙江等省部分地区为害严重,一般每年损失20%-30%,干旱年份可达70%-80%,甚至绝产。甘薯小象甲的传播扩散将对我国甘薯种植产区构成巨大威胁。因此,甘薯小象甲寄主植物的经济重要性较大。

传播扩散的可能性(P4)。甘薯小象甲成虫爬行能力强,并有一定的飞行能力,自身可作短距离扩散;该虫短距离传播还依赖人及随身携带物的流动;而远距离的传播扩散主要靠各种旋花科作物果实调运进行。甘薯小象甲耐饥力强,可延续5个月左右,通常运输中甘薯小象甲的存活率较高。另外,甘薯小象甲雌成虫平均产卵11.5-170.6粒/头,繁殖力强,利于种群的快速扩增。因此,甘薯小象甲易传入扩散,环境适应,短暂潜伏后,就能在入侵地迅速发生并对当地作物造成严重危害。

危险性管理难度(P5)。甘薯小象甲的食性相对单一,属寡食性害虫。但该虫具有较强的繁殖力和生命力,都使其不易防治和根除。再加上虫体微小,常生活于作物果实的内部,卵也产于植物组织中,这种隐蔽习性增加了防治难度,并且使得运输过程中很难处理彻底。此外,该虫本身还易对农药产生抗性,因此防治特别困难。

2.2.2 风险指标值 (1)江苏省内分布状况(P11):赋分评判标准为:若江苏省内无分布,P11=3;分布占省内面积的0-20%,P11=2;多达20%-50%,P11=1;大于50%,P11=0。由于甘薯小象甲目前省内无分布,故P11=3。

(2)潜在经济危害性(P21):赋分评判标准为:造成达20%以上的产量损失,和(或)对作物产品质量严重影响,P21=3;在5%-20%之间的产量损失,和(或)造成的质量损失较大,P21=2;在1%-5%之间产量损失,和(或)造成的质量损失较小,P21=1;若仅造成小于1%的产量损失,且对质量无影响,P21=0。根据该虫在国内部分地区可造成甘薯绝产,产量常规损失也在20%-50%之间,且有严重质量损失,故P21=3。

(3)是否为传播携带其他检疫性有害生物(P22):赋分评判标准为:传带检疫性有害生物可超过3种,P22=3;只可传带2种,P22=2;仅能传带1种,P22=1;不具有传带检疫性有害生物能力,P22=0。甘薯小象甲不传播任何检疫性有害生物,故P22=0。

(4)省外重视程度(P23):赋分评判标准为:如国内有3个以上的省份把某一有害生物列为检疫性有害生物补充名单,P23=3;如有2个,P23=2;仅有1个,P23=1;无,P23=0。目前把甘薯小象甲列为检疫性有害生物的省份超过3个,故P23=3。

(5)受害栽培种的种类(P31):赋分评判标准为:可危害10种以上的栽培种,P31=3;如有5-9种,P31=2;仅有1-4种,P31=1;若无,P31=0。已知甘薯小象甲危害的栽培作物仅有甘薯1种,P31=1。

(6)受害栽培种的范围(P32):赋分评判标准为:省内遭受危害的栽培种的总面积达

14 400 hm2以上,P32=3;9 000-14 400 hm2,P32=2;小于9 000 hm2,P32=1;无,P32=0。由于江苏目前甘薯种植区未发生危害,P32=0。

(7)受害栽培种的特殊经济价值(P33):赋分评判标准为:依据其实用价值、出口创收等,由专家进行判断定级,分为四个等级,P33=3,2,1,0。甘薯作为经济作物之一,P33=2。

(8)截获难易(P41):赋分评判标准为:依据截获频次,以及现有技术,设3,2,1三个等级。到目前为止,江苏仅报道一次截获过该虫,故P41=1。

(9)运输中有害生物的存活率(P42):赋分评判标准为:依据运输过程中存活率,划分为四个等级,P42=3(大于40%),P42=2(10%-40%),P42=1(0-10%),P42=0。由于运输中甘薯小象甲具有很强的生存能力,可达40%以上的存活率,故P42=3。

(10)省外分布情况(P43):赋分评判标准为:根据在中国各省、市、自治区分布情况可分为四个等级,P43=3(大于50%),P43=2(25%-50%),P43=1(0-25%),P43=0。该虫在中国分布的省、市、自治区占中国的25%-50%,故P43=2。

(11)省内适生范围(P44):赋分评判标准为:在省内适生地区面积占比可分为四个等级,P44=3(大于50%),P44=2(25%-50%),P44=1(0-25%),P44=0。该虫在江苏的适生范围达100%(含适生、潜在适生范围),故P44=3。

(12)传播力(P45):赋分评判标准为:气传,P45=3;有很强活动力的介体传播,P45=2;土传或传播力很弱,P45=1;该项不设0级。该虫随调运频繁的薯质资源传播,属于第二种情况,传播介体具有较强活动力,故P45=2。

(13)鉴定难度(P51):赋分评判标准为:现有技术很难检验鉴定,P51=3;检验鉴定方法快捷准确,P51=0;两者之间,P51=2,1。针对该虫现有检验鉴定方法需消耗一定时间,准确性一般,故P51=2。

(14)除害难度(P52):赋分评判标准为:依据除害率可分为四个等级,P52=3(小于1%),P52=2(10%-50%),P52=1(50%-99%),P52=0(100%)。此虫在运输过程中处理不可能完全彻底,符合除害率在50%以下,故P52=2。

(15)根除难度(P53):赋分评判标准为:田间防效差,成本高,操作难度大,P53=3;田间防效很显著,成本低,操作简便,P53=0;介于二者之间,P53=2,1。由于该虫田间防效和成本一般,根除难,但化学农药和天敌生防都可控制其危害,故P53=2。

因此,甘薯小象甲省内分布状况:P1=3;

潜在危害性:P2=0.6P21+0.2P22+0.2P23=0.6×3+0.2×0+0.2×3=2.4;

受害寄主的经济重要性:P3=Max(P31, P32, P33)=2;

传播扩散的可能性:

${{P}_{4}}=\sqrt[5]{{{P}_{41}}\times {{P}_{42}}\times {{P}_{43}}\times {{P}_{44}}\times {{P}_{45}}}=2.04$;

危险性管理难度:P5= (P51+P52+P53)/3=2;

综合风险值:

$R=\sqrt[5]{{{P}_{1}}\times {{P}_{2}}\times {{P}_{3}}\times {{P}_{4}}\times {{P}_{5}}}=2.26$。

根据R值的大小,可将甘薯小象甲在江苏的风险程度划分为4个等级,其中R值3.0-2.5属于极高风险,2.4-2.0属于高风险,1.9-1.5属于中风险,1.4-1.0属于低风险。本文依据PRA准则,定量分析计算出甘薯小象甲的R值为2.26,针对江苏地区甘薯小象甲为高风险有害生物。因此甘薯小象甲在江苏具有较大的风险性,应采取检疫措施,这一结果与江苏将其列为农业植物检疫性有害生物补充名单是相一致的。

2.3 甘薯小象甲的风险性管理

2.3.1 政策法规 积极宣传植物检疫相关的法律法规及甘薯小象甲在江苏省内检疫地位。教育并帮助甘薯种植户了解并遵守植物检疫法规。植检部门不仅要积极引进和推广高效、便捷的检疫新技术,还要依据检疫法规,认真查处违规调运甘薯种质资源案件(钟鹏飞,1994)。

2.3.2 检疫处理措施 农事操作上,首选抗性品种,实行水旱轮作,避免薯块裸露,多施有机肥、及时灌水。甘薯收获后,清除有虫薯蔓、薯块等,集中深埋或烧毁(吴宝巨,2007)。目前,在大田生产中针对甘薯小象甲防治多采用辛硫磷、毒死蜱和锐劲特等药剂进行化学防治(林泗海,2005;甘林等,2013;张菡等,2013;王容燕等,2015;李月芬等,2017)。还可以利用甘薯小象甲的天敌,昆虫病原线虫、病原真菌和寄生蜂等为主。采用异小杆类线虫、斯氏线虫、球孢白僵菌和褐色绿僵菌侵染等进行生物防治,可达到理想的防治效果(Su et al.,1988;Tarafdar and Sarkar,2006;Ondiaka et al.,2008;曹伟平等,2011)。近年来,昆虫不育技术也有研究,例如甘薯小象甲的卵被150 Gy剂量的χ-射线照射就不能孵化,雌虫被200 Gy剂量γ-射线照射后,其受精囊中的精子活力下降(Jansson et al.,1990;Kumano et al.,2010)。另外,性诱剂能降低甘薯小象甲的种群密度,也是控害的有效方法(Coffelt et al.,1978;Heath et al.,1986;Reddy and Guerrero,2004)。此外,有研究发现,一些作物可以起到驱避该虫的作用,例如大葱、辣椒等可以作为屏障阻止甘薯小象甲危害甘薯,甚至甜玉米和薄荷也可以有效减少甘薯小象甲的产卵量(Dada et al.,2020)。

2.3.3 风险管理方案的选择使用 上述两个方案,建议同时采取,配合使用。针对外来有害生物或检疫性有害生物,需要预防和治理的有机结合。无论江苏甘薯小象甲有无发生危害,以上措施都可以有效降低该虫的风险性。

3 讨论

甘薯小象甲隶属鞘翅目、三锥象科,是为害甘薯最为严重的害虫之一,在甘薯生长期和储存期均可危害。鉴于甘薯小象甲的危险性,我国从20世纪50年代起,直到1983年一直将其列为我国农业检疫性害虫,江苏从1985年起将其列入农业检疫性有害生物补充名单。因此有必要对甘薯小象甲的传入和扩散进行风险分析。本研究是在查阅相关文献的基础上,根据甘薯小象甲的生物学和生态学特性,通过比较江苏和其发生区的气候条件,定性分析甘薯小象甲在江苏的适生性。尽管江苏不存在周年发生区,但江苏的气候条件是有利于甘薯小象甲的生长发育和危害的。利用相关风险性分析方法,从国内和江苏分布状况、潜在的危害性、被害栽培种的经济重要性、传入扩散及定殖的可能性以及风险性管理难度5个方面对甘薯小象甲在江苏的风险性进行定量分析,其综合风险值R为2.26,表明该虫具有高风险性。

另外,有文献和书籍记载江苏有甘薯小象甲分布(赵养昌等,1974;洪晓月,2017),而且在1949年以前就已传入江苏(洪晓月等,2003)。但是这些文献和书籍中均无甘薯小象甲传入及在江苏分布的引用文献,我们也未查到甘薯小象甲在江苏分布的原始记录文献。结合江苏省植保站从未在江苏查到过甘薯小象甲的发生危害,且仅有一次检疫过程中截获过甘薯小象甲这一现实(CNR,2017),我们推断,目前江苏省可能没有甘薯小象甲的的分布。但是,江苏的大部分地区是甘薯小象甲的适宜分布区,因此该虫传入并定殖建立种群的风险性很高,因此需要加强对该虫的检疫工作。

参考文献

Brookes DR, Hereward JP, Walter GH, Furlong MJ , 2019.

Origins, divergence, and contrasting invasion history of the sweet potato weevil pests Cylas formicarius (Coleoptera: Brentidae) and Euscepes batatae (Coleoptera: Curculionidae) in the Asia-Pacific

Journal of Economic Entomology 112(6):2931-2939.

DOI:10.1093/jee/toz198      URL     PMID:31352482      [本文引用: 1]

Cylas formicarius F. and Euscepes batatae Waterhouse are the most damaging sweet potato insect pests globally. Both weevils are thought to have invaded the Pacific alongside the movement of sweet potato (Ipomoea batatas (L.) Lam. Convolvulaceae), with C. formicarius having originated in India and E. batatae in Central or South America. Here we compare the genetic relationships between populations of the pests, primarily in the Asia-Pacific, to understand better their contemporary population structure and their historical movement relative to that of sweet potato. Cylas formicarius has divergent mitochondrial lineages that indicate a more complex biogeographic and invasive history than is presently assumed for this insect, suggesting it was widespread across the Asia-Pacific before the arrival of sweet potato. Cylas formicarius must have originally fed on Ipomoea species other than I. batatas but the identity of these species is presently unknown. Cylas formicarius was formerly designated as three species or subspecies and the genetic data presented here suggests that these designations should be reinvestigated. Euscepes batatae has very low genetic diversity which is consistent with its historical association with sweet potato and a recent introduction to the Asia-Pacific from the Americas. The distribution of E. batatae may be narrower than that of C. formicarius in the Asia-Pacific because it has relied relatively more on human-assisted movement. Consequently, E. batatae may become more widespread in the future. Investigating the invasion history of both species will help to understand the probability and nature of future invasions.

Cao WP, Song J, Wang JY, Feng SL, Du LX , 2011.

Screening of Beauveria bassiana strains against Cylas formicarius

Journal of Hebei Agricultural Sciences, 15(11):45-47.

[本文引用: 1]

[ 曹伟平, 宋健, 王金耀, 冯书亮, 杜立新 , 2011.

感染甘薯小象甲白僵菌菌株的初步筛选

河北农业科学, 15(11):45-47.]

[本文引用: 1]

Chalfant RB , 1990.

Ecology and management of sweet potato insects

Annual Review of Entomology, 35:157-180.

DOI:10.1146/annurev.en.35.010190.001105      URL     [本文引用: 1]

Chen SD , 2001. New China Agricultural Plant Quarantine. Beijing: China Agricultural Press. 49.

[本文引用: 1]

[ 陈生斗 , 2001. 新中国农业植物检疫. 北京: 中国农业出版社. 49.]

[本文引用: 1]

CNR, 2017.

Nanjing post inspection first intercepts the pest sweet potato weevil (Cylas formicarius)

http://js.cnr.cn/2011jsfw/whly/20170912/t20170912_523945828.shtml.

URL     [本文引用: 2]

Coffelt JA, Vick KW, Sower LL , 1978.

Sex pheromone of the sweet potato weevil, Cylas formicarius elagantulus laboratory bioassay and evidence for a multiple component system

Environmental Entomology, 7(5):756-758.

DOI:10.1093/ee/7.5.756      URL     [本文引用: 1]

Dada TE, Liu J, Johnson A, Rehman M, Gurr GM , 2020.

Screening barrier plants to reduce crop attack by sweet potato weevil ( Cylas formicarius)

Pest Management Science, 76(3):894-900.

DOI:10.1002/ps.5594      URL     PMID:31441202      [本文引用: 1]

BACKGROUND: Sweet potato weevil, Cylas formicarius (Fabricius) attacks stems and storage roots of sweet potato, Ipomoea batatas, and is a major pest of this globally significant crop. To minimize the immigration of weevils into sweet potato fields from nearby donor habitat, we assessed scope for a barrier plant approach. Here, we report a novel, two-stage, multiple choice olfactometer method to screen candidate barrier plant species and a field study of the effects of shortlisted barrier plants of weevil movement and plant damage. RESULTS: Initial work established that a combination of sweet potato foliage and storage root was significantly more attractive to adult C. formicarius than either tissue alone in the distal chamber of choice arms. Among 15 candidate barrier plant species in intermediate chambers in arms, spring onion, oregano, chilli, basil, sweetcorn, fennel, lime mint and lemongrass significantly reduced passage of C. formicarius. Of these, sweetcorn and lime mint significantly reduced the numbers of oviposition holes in sweet potato storage roots. A field study showed that basil and chives were effective barrier plants for reducing weevil damage to sweet potato storage roots. CONCLUSION: Our method has utility for screening additional candidate plants, and suggests that weevil dispersal and subsequent oviposition are affected by passage through some plants, suggesting scope for barrier plants to contribute to the management of this major pest. (c) 2019 Society of Chemical Industry.

Du YZ, Dai L, Ju RT, Gu J, Diao CY, Gong WR , 2005.

Risk analysis of alien invasive western flower thrips, Frankliniella occidentalis(Pergande), in China

Scientia Agricultura Sinica, 38(11):2360-2364.

URL     [本文引用: 1]

Based on the rule of pest risk analysis (PRA) of international standards for pest measurements (ISPM) and the relevant model of PRA, this paper delt with the quantitative and qualitative analysis of the risk level of Frankliniella occidentalis (Pergande) on five aspects - the distribution, potential damaged degree, economical value of damaged host plants, spreading possibility and risk management difficulty in China. The value of the synthetic index of the pest risk is 2.33, which has reached the level of the quarantine pest in China. Based on this result two strategies for the better risk management were proposed and evaluated in order to reduce the risk to an acceptable level.

[ 杜予州, 戴霖, 鞠瑞亭, 顾杰, 刁春友, 龚伟荣 , 2005.

入侵害虫西花蓟马在中国的风险性初步分析

中国农业科学, 38(11):2360-2364.]

[本文引用: 1]

FAO/IPPC, 2001.

Pest risk analysis for quarantine pests

http://www.fao.org/.

URL     [本文引用: 1]

Gan L, Ruan HC, Yang XJ, Du YX, Shi NN, Chen FR , 2013.

A comparison test of drug efficacy of 8 pesticides to control sweet potato weevil

Fujian Agricultural Science and Technology, ( 7):45-47.

[本文引用: 1]

[ 甘林, 阮宏椿, 杨秀娟, 杜宜新, 石妞妞, 陈福如 , 2013.

8种杀虫剂防治甘薯小象甲的药效对比试验

福建农业科技, ( 7):45-47.]

[本文引用: 1]

GBIF, 2020.

Cylas formicarius (Fabricius, 1798)

https://www.gbif.org/species/1171601.

URL     [本文引用: 3]

Heath RR, Coffelt JA, Sonnet PE , 1986.

Identification of sex- pheromone produced by female sweet potato weevil, Cylas formicarius elegantulus(Summers)

Journal of Chemical Ecology, 12(6):1489-1503.

DOI:10.1007/BF01012367      URL     PMID:24307127     

A sex pheromone of the sweetpotato weevil,Cylas formicarius elegantulus (Summers), was obtained from collections of volatiles from virgin females, and pheromone was isolated by means of liquid and gas chromatography. The purification procedure was monitored by quantitative laboratory and field bioassays and the compound was identified as (Z)-3-dodecen-1-ol (E)-2-butenoate by means of spectroscopic and microchemical methods. Synthesis, followed by laboratory and field bioassays, showed that the biological activity of the synthetic material was qualitatively and quantitatively indistinguishable from that of the purified natural product.

Hong XY, Xu HG, Li HM, Xie L , 2003.

Alien invasive insects and pathogens in Jiangsu province: Current status, influence and control

Journal of Nanjing Agricultural University, 26(4):116-123.

[ 洪晓月, 徐海根, 李红梅, 谢霖 , 2003,

江苏省外来入侵害虫与病原生物的现状、影响与防治对策

南京农业大学学报, 26(4):116-123.]

Hong XY , 2017. Agricultural Entomology. Beijing: China Agriculture Press. 303-304.

[本文引用: 3]

[ 洪晓月 , 2017. 农业昆虫学. 北京: 中国农业出版社. 303-304.]

[本文引用: 3]

Huang BK, Luo XN, Qi SC , 1981. Agricultural Entomology (Volume One). Beijing: Agricultural Press. 240-245.

[本文引用: 2]

[ 黄邦侃, 罗肖南, 齐石成 , 1981. 农业昆虫学(上册). 北京: 农业出版社. 240-245.]

[本文引用: 2]

Huang LF, Huang SH, Fang BP, Chen KY, Zhang XJ, Li YJ, Wang ZY, Luo ZX , 2011.

Research development of the control of sweet potato weevil

Guangdong Agricultural Sciences, ( Suppl.1):77-79.

[本文引用: 1]

[ 黄立飞, 黄实辉, 房伯平, 陈景益, 张雄坚, 李育军, 王章英, 罗忠霞 , 2011.

甘薯小象甲的防治研究进展

广东农业科学, ( 增刊):77-79.]

[本文引用: 1]

Jansson RK, Adriang B, Hunsberger B , 1990.

Seasonal abundance, population growth, and within-plant distribution of sweet potato weevil (Coleoptera:Curculionidae) on sweet potato in southern Florida

Environmental Entomology, 19(2):313-321.

DOI:10.1093/ee/19.2.313      URL     [本文引用: 1]

Jansson RK, Bryan HH, Sorensen KA , 1987.

Within-vine distribution and damage of sweet potato weevil, Cylas formicarius elegantulus (Coleoptera: Curculionidae), on four cultivars of sweet potato in Southern Florida

The Florida Entomologist, 70(4):523-526.

DOI:10.2307/3494797      URL     [本文引用: 1]

Jiang Q, Liang YB, Wang NY, Yao WG , 1995.

Research of the quantitative analysis for the pest risk evaluation

Plant Quarantine, 9(4):208-211.

[本文引用: 1]

[ 蒋青, 梁忆冰, 王乃扬, 姚文国 , 1995.

有害生物危险性评价的定量分析方法研究

植物检疫, 9(4):208-211.]

[本文引用: 1]

Jiang XL, He WZ, Xiao S, Ren LQ, Sun BZ, Zhang Cl , 2001.

Study on the biology and survival of bactrocera dorsalis in the border region of Yunnan

Journal of Southwest University (Natural Science Edition), 23(6):510-513, 517.

[本文引用: 1]

[ 蒋小龙, 和万忠, 肖枢, 任丽卿, 孙兵昭, 张朝良 , 2001.

桔小实蝇在云南边境生物学研究及适生性分析

西南农业大学学报, 23(6):510-513, 517.]

[本文引用: 1]

Ju RT, Li YZ, Wang F, Du YZ, Zhang DS , 2008.

Prediction of suitable distributions of red palm weevil Rhyncophorus ferrugineuss Fabriciu (Coleoptera: Curculionidae) in China with analysis of bio-climatic matching

Scientia Agricultura Sinica, 41(8):2318-2324.

URL     [本文引用: 1]

[ 鞠瑞亭, 李跃忠, 王凤, 杜予州, 张德顺 , 2008.

基于生物气候相似性的锈色棕榈象在中国的适生区预测

中国农业科学, 41(8):2318-2324.]

[本文引用: 1]

Kandori I, Kimura T, Tsumuki H, Sugimoto T , 2006.

Cold tolerance of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), from the Southwestern Islands of Japan

Applied Entomology and Zoology, 41(2):217-226.

DOI:10.1303/aez.2006.217      URL     [本文引用: 1]

Kawamura K, Sugimoto T, Kakutani K, Matsuda Y, Toyoda H , 2007.

Genetic variation of sweet potato weevils, Cylas formicarius (Fabricius) (Coleoptera: Brentidae), in main infested areas in the world based upon the internal transcribed spacer-1 (ITS-1) region

Applied Entomology & Zoology, 42(1):89-96.

[本文引用: 1]

Kumano N, Kuriwada T, Shiromoto K, Haraguchi D, Kohama T , 2010.

Assessment of effect of partial sterility on mating performance in sweet potato weevil (Coleoptera:Curculionidae)

Journal of Economic Entomology, 103(6):2034-2041.

DOI:10.1603/ec10044      URL     PMID:21309223      [本文引用: 1]

The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations. Although the effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females, the use of gamma radiation to induce sterility negatively impacts reproductive cells as well as somatic cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. In the current study, we evaluated the effect of irradiation dose intensity on fertility, mating propensity, and mating competitiveness in sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae), for 16 d after irradiation. Although the mating propensity of males irradiated with 200 Gy, the dose currently used to induce complete sterility of C. f. elegantulus in the SIT program in Okinawa Prefecture, was equal to that of nonirradiated weevils for the first 6 d, the mating propensity of males irradiated with doses between of 75 and 150 Gy was maintained for the first 12 d. The potential fertilization ability of weevils was highly depressed compared with the control weevils, even in those treated with 75 Gy. Mating performance was severely compromised in weevils that were irradiated with a dose of 100 Gy or more. These results demonstrate that partial sterilization can be highly advantageous in eradication programs for the sweetpotato weevil. We discuss the advantages of the application of partial irradiation in insect eradication programs.

Lei J, Wang LJ, Su WJ, Chai SS, Yang XS , 2018.

Research development of the control of sweet potato weevil

Hubei Agricultural Sciences, 57(24):9-12.

[本文引用: 1]

[ 雷剑, 王连军, 苏文瑾, 柴沙沙, 杨新笋 , 2018.

甘薯小象甲防治研究进展

湖北农业科学, 57(24):9-12.]

[本文引用: 1]

Li YF, Zou JY, Chen ZM, Wu HJ, Zhang G , 2017.

Analysis of chlorantraniliprole in controlling sweet potato weevil

South China Agriculture, 11(11):35-36.

[ 李月芬, 邹建运, 陈钊铭, 吴华健, 张光 , 2017.

氯虫苯甲酰胺防治甘薯小象甲试验分析

南方农业, 11(11):35-36.]

Lin SH , 2005.

Field experiment on efficiency of tegentin controlling Clays formicarius(Fabricius)

Wuyi Science Journal, 21(12):120-122.

[本文引用: 1]

[ 林泗海 , 2005.

锐劲特防治甘薯小象甲田间药效试验

武夷科学, 21(12):120-122.]

[本文引用: 1]

Liu G , 2010.

Jiangsu province releases new “Supplementary List of Agricultural Plant Quarantine Pests”

Pesticide Market News, ( 2):48.

[本文引用: 2]

[ 刘刚 , 2010.

江苏省发布新的“农业植物检疫性有害生物补充名单”

农药市场信息, ( 2):48.]

[本文引用: 2]

Loebenstein G, Thottappilly G , 2009.

The Sweet Potato.

Berlin: Springer Netherlands. 161-188.

[本文引用: 1]

Mullen MA, Cao J , 1982.

Development, reproduction rate and longevity of sweet potato weevil ( Cylas formicarius)

Plant Quarantine, 6(6):12-13.

[ Mullen MA, 曹骥 , 1982.

甘薯小象甲的发育、繁殖率及寿命

植物检疫, 6(6):12-13.]

Muruvanda DA, Beardsley JW, Mitchell WC , 1986.

Additional alternate hosts of the sweet potato weevils Cylas formicarius elegantulus and Euscepes postfasciatus(Coleoptera: Curculionidae) in Hawaii

Proceedings Hawaiian Entomological Society, 26(3):93-96.

[本文引用: 1]

Pest Control of Agriculture and Forestry, 2008.

Sweet potato weevils (Cylas formicarius)

[本文引用: 2]

[ 农林病虫防治网, 2008.

甘薯小象甲

http://www.bc000.com/test.asp?ID=2236.]

URL     [本文引用: 2]

Nottingham SF, Wilson DD, Severson RF, Kays SJ , 1987.

Feeding and oviposition preferences of the sweet potato weevil, Cylas formicarius elegantulus, on the outer periderm and exposed inner core of storage roots of selected sweet potato cultivars

Entomologia Experimentaliset Applicata, 45:271-275.

[本文引用: 1]

Ondiaka S, Maniania NK, Nyamasyo GHN, Nderitu JH , 2008.

Virulence of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to sweet potato weevil Cylas punctiocollis and effects on fecundity and egg viability

Annals of Applied Biology, 153(1):41-48.

DOI:10.1111/aab.2008.153.issue-1      URL     [本文引用: 1]

Reddy GVP, Guerrero A , 2004.

Interactions of insect pheromones and plant semiochemicals

Trends in Plant Science, 9(5):253-261.

DOI:10.1016/j.tplants.2004.03.009      URL     [本文引用: 1]

AbstractPlant semiochemicals are known to produce a wide range of behavioral responses in insects. Some insects sequester or acquire host plant compounds and use them as sex pheromones or sex pheromone precursors. Other insects produce or release sex pheromones in response to specific host plant cues, and chemicals from host plants often synergistically enhance the response of an insect to sex pheromones. Plant volatiles can also have inhibitory or repellent effects that interrupt insect responses to pheromones and attract predators and parasitoids to the attacking species after herbivory injury. Here, we review different interactions between plant semiochemicals and insect pheromones, paying attention to those that can result in the development of more efficient and reliable programs for pest control.]]>

Shi L, Shen RR, Bai J , 2017.

Advance in suitability analysis of insects

Journal of Inner Mongolia Agricultural University (Natural Science Edition), 38(1):119-126.

[本文引用: 1]

[ 史丽, 申荣荣, 白娟 , 2017.

昆虫适生性分析的研究进展

内蒙古农业大学学报(自然科学版), 38(1):119-126.]

[本文引用: 1]

Su CY, Tzean SS, Ko WH , 1988.

Beauveria bassiana as the lethal factor in a Taiwanese soil pernicious to sweet potato weevil, Cylas formicarius

Journal of Invertebrate Pathology, 52(1):195-197.

DOI:10.1016/0022-2011(88)90125-5      URL     [本文引用: 2]

Tarafdar J, Sarkar MA , 2006.

Managing sweet potato weevil ( Cylas formicarius Fabricius) in West Bengal, India, by some chemicals, bioproducts and sex pheromone traps

Acta Horticulturae, 703:189-196.

[本文引用: 1]

Wang JF , 2010.

Integrated control technique of Cylas formicarium

Journal of Hebei Agricultural Sciences, 14(5):36-37.

[本文引用: 1]

[ 王际方 , 2010.

甘薯小象甲的综合防治

河北农业科学, 14(5):36-37.]

[本文引用: 1]

Wang RY, Ma GY, Gao B , 2015.

Evaluation on the toxicity of ten insecticides to sweet potato weevil ( Cylas formicarius)

Agrochemicals, 54(10):773-776.

[ 王容燕, 马广源, 高波 , 2015.

10种杀虫剂对甘薯蚁象的毒力测定

农药, 54(10):773-776.]

Wang RY, Ma J, Li XH, Gao B, Chen SL , 2016.

Developmental threshold temperature and effective accumulated temperature for sweetpotato weevil (Cylas formicarius)

Chinese Agricultural Science Bulletin, 32(20):35-39.

[ 王容燕, 马娟, 李秀花, 高波, 陈书龙 , 2016.

甘薯蚁象发育起点温度和有效积温的研究

中国农学通报, 32(20):35-39.]

Weather forecast, 2020.

Weather of Jiangsu Province in ten years (2010-2019)

(https://tianqi.911cha.com/)

URL     [本文引用: 3]

[ 天气预报, 2020.

江苏地区十年来(2010-2019)天气

( https://tianqi.911cha.com/)]

URL     [本文引用: 3]

Wolfe GW , 1991. The origin and dispersal of the pest species of Cylas with a key to the pest species groups of the world//Jansson RK, Raman KV(eds.). Sweet Potato Pest Management. Colorado: Westview Press. 13-43.

[本文引用: 2]

Wu BJ , 2007.

Occurrence and control of sweet potato weevil

Modern Agricultural Science and Technology, ( 8):44.

[本文引用: 1]

[ 吴宝巨 , 2007.

甘薯小象甲的发生与防治

现代农业科技, ( 8):44.]

[本文引用: 1]

Xu KC, Dong YL, Yang ZX, Wei YG, Huang Q, Sun YX , 2017.

DNA extraction from Cylas formicarius(Coleoptera: Brentidae) by Chelex-100 method and molecular identification of Cylas formicarius in Yunnan

Plant Protection, 43(3):154-159.

[本文引用: 1]

[ 徐可成, 董跃丽, 杨子祥, 韦永贵, 黄琼, 孙跃先 , 2017.

Chelex-100法提取甘薯小象甲DNA及云南地区甘薯小象甲的分子鉴定

植物保护, 43(3):154-159.]

[本文引用: 1]

Xu SQ, Wang HF, Chen SW , 2015.

Occurrence and control of Sweet Potato Weevil ( Cylas formicarius)

Xiandai Horticulture, ( 7):98-99.

[本文引用: 1]

[ 徐三勤, 王海富, 陈时伟 , 2015.

甘薯小象甲的发生规律与防控技术

现代园艺, ( 7):98-99.]

[本文引用: 1]

Yu HB, Shen JW, Ma J, Ma HJ, Chen SL , 2011.

The study on rDNA ITS-1 variation of Cylas formicarius(Coleoptera: Brentidae) populations and its invasive sources in China

Chinese Agricultural Science Bulletin, 27(18):282-287.

[ 于海滨, 沈江卫, 马娟, 马辉杰, 陈书龙 , 2011.

中国甘薯小象甲的rDNA ITS-1遗传变异及入侵来源研究

中国农学通报, 27(18):282-287.]

Yu HB, Zheng Q, Chen SL , 2010.

Biological characteristics and integrated control measures of Cylas formicarius

Journal of Hebei Agricultural Sciences, 14(8):32-35.

[本文引用: 1]

[ 于海滨, 郑琴, 陈书龙 , 2010.

甘薯小象甲的生物学特征与综合防治措施

河北农业科学, 14(8):32-35.]

[本文引用: 1]

Yuan F , 2001. Agricultural Entomology. Beijing: China Agriculture Press. 177.

[本文引用: 1]

[ 袁锋 , 2001. 农业昆虫学. 北京: 中国农业出版社. 177.]

[本文引用: 1]

Zhang H, Wang LP, Fan KJ, Zou XM, Chen SL, Wang RY , 2013.

Field screening test of sweet potato weevil control agents in the Three Gorges Reservoir area

Shanxi Journal of Agricultural Sciences, 59(6):34-36.

[本文引用: 1]

[ 张菡, 王良平, 范开举, 邹祥明, 陈书龙, 王容燕 , 2013.

三峡库区甘薯小象甲防治药剂田间筛选试验

陕西农业科学, 59(6):34-36.]

[本文引用: 1]

Zhao YC, Li HX, Zhao ZL , 1974. Identification Manual of Plant Quarantine Pests. Beijing: Science Press. 53.

[本文引用: 3]

[ 赵养昌, 李鸿兴, 赵仲苓 , 1974. 植物检疫害虫鉴定手册. 北京: 科学出版社. 53.]

[本文引用: 3]

Zhong PF , 1994.

Occurrence and quarantine strategy of sweet potato weevil

Plant Quarantine, ( 5):304-305.

[ 钟鹏飞 , 1994.

甘薯小象甲的发生和检疫对策探讨

植物检疫, ( 5):304-305.]

Zhou GL, Yang QH, Zhou KS, Zou XX, Zhou FY , 2010.

The occurrence and prevention of sweet potato weevil

China Fruit & Vegetable, ( 7):27.

[ 周桂乐, 杨清华, 周坤生, 邹秀香, 周凡英 , 2010.

甘薯小象甲的发生危害与防治

中国果菜, ( 7):27.]

/