外源海藻糖对水稻生理生化及褐飞虱抗性的影响 *

应用昆虫学报, 2020, 57(4): 814-822 doi: 10.7679/j.issn.2095-1353.2020.083

昆虫抗药性专栏

外源海藻糖对水稻生理生化及褐飞虱抗性的影响 *

孙李曈,**, 冯玲, 刘子睿, 徐小伟, 刘景澜,***

扬州大学园艺与植物保护学院,扬州 225009

Effects of trehalose on the physiological and biochemical characteristics of rice, including resistance to the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

SUN Li-Tong,**, FENG Ling, LIU Zi-Rui, XU Xiao-Wei, LIU Jing-Lan,***

College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China

通讯作者: *** E-mail:liujl@yzu.edu.cn

**第一作者First author,E-mail: s18851449978@163.com

收稿日期: 2019-07-4   接受日期: 2020-03-27   网络出版日期: 2020-07-27

基金资助: *国家自然科学基金.  31871978

Corresponding authors: *** E-mail:liujl@yzu.edu.cn

Received: 2019-07-4   Accepted: 2020-03-27   Online: 2020-07-27

摘要

【目的】 海藻糖参与植物对逆境胁迫的响应与适应过程,本文旨在明确海藻糖对水稻生理生化特性及抗褐飞虱影响,将有助于全面探索海藻糖对水稻的潜在作用,为后续研究提供参考和依据。 【方法】 本实验在外施10 mmol∙L –1和50 mmol∙L –1浓度的海藻糖后,测定水稻超氧化物歧化酶(SOD)、过氧化物酶(POD)活性,丙二醛(MDA)和可溶性糖含量,褐飞虱取食后植株功能损失系数(FPLI)及利用刺吸电位技术(EPG)研究褐飞虱的取食行为。【结果】外施10 mmol∙L –1和50 mmol∙L –1浓度的海藻糖后,POD活性和可溶性糖含量显著上升,MDA含量显著下降,并且显著提高了水稻植株的功能损失指数,EPG结果发现海藻糖处理明显增加了N4波的持续时间。【结论】 适量的海藻糖改善水稻抗非生物胁迫的能力,但并不有利于对褐飞虱抗性的提高。

关键词: 海藻糖 ; 水稻 ; 生理生化 ; 褐飞虱 ; 抗虫性

Abstract

[Objectives] Trehalose is involved in the response and adaptation of plants to stress. This article aims to clarify the effect of trehalose on the physiological and biochemical characteristics of rice and resistance to the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), which will help to fully explore the potential role of trehalose on rice and provide reference and basis for subsequent research. [Methods] The effects of trehalose on the physiological and biochemical characteristics of rice, including its resistance to the brown planthopper were investigated after treatment with 10 mmol∙L –1 and 50 mmol∙L –1 trehalose; specifically, the activity of the enzymes superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA), and soluble sugar content. In addition, the functional plant loss index (FPLI) after BPH had fed on rice plants and the effects of trehalose treatment on BPH feeding behavior were investigated with an electrical penetration graph (EPG). [Results] The results showed that after applying trehalose at a concentration of 10 mmol·L –1 and 50 mmol·L –1, the POD activity and soluble sugar content increased significantly, the MDA content decreased significantly, and the function loss index of rice plants was significantly improved. EPG results found that trehalose treatment significantly increased the duration of the N4 wave. [Conclusion] Although appropriate levels of trehalose can improve the resistance of rice to abiotic stress, it does not improve the resistance of rice to BPH.

Keywords: trehalose ; rice ; physiology and biochemistry ; brown planthopper ; rice resistance to pest

PDF (0KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙李曈, 冯玲, 刘子睿, 徐小伟, 刘景澜. 外源海藻糖对水稻生理生化及褐飞虱抗性的影响 *. 应用昆虫学报[J], 2020, 57(4): 814-822 doi:10.7679/j.issn.2095-1353.2020.083

SUN Li-Tong, FENG Ling, LIU Zi-Rui, XU Xiao-Wei, LIU Jing-Lan. Effects of trehalose on the physiological and biochemical characteristics of rice, including resistance to the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Chinese Journal of Applied Entomology[J], 2020, 57(4): 814-822 doi:10.7679/j.issn.2095-1353.2020.083

海藻糖(Trehalose)是由2个葡萄糖分子通过以α, α, l, l -糖苷键组合成的非还原性二糖,在细菌、酵母菌、真菌、昆虫和无脊椎动物中均有发现(Elbein,1974),最近在部分高等植物体内也有存在的报道(Goddijn and Smeekens,1998)。这种物质最先是在1882年被首次分离出来。最开始,人们研究发现海藻糖除了具有储存碳水化合物和运输糖的功能外,还在逆境胁迫方面发挥重要作用,特别是在作物受到高温和干旱胁迫时(Wiemken,1990;Crowe et al.,1998)。随着近年来各种糖类的多种生理功能受到人们的广泛关注,越来越多的科学证据表明,蔗糖和海藻糖等双糖在植物防御反应中的作用类似于诱导子诱导的植物对病原菌的防御反应(Govind et al.,2016)。同时,海藻糖对农作物的保护作用,也是值得研究的领域之一(Goddijn and Dun,1999),通过转基因技术还发现海藻糖是细胞膜及蛋白质的保护剂和稳定剂(Abebe et al.,2003)。随着研究的深入,海藻糖在植物体抗逆境胁迫方面的作用和机理越来越受到研究者们的关注。

植物在生长过程中不免会遭遇非生物或生物胁迫的影响,其中最主要的非生物胁迫包括干旱、盐碱和低温环境等,这些因素对植物的正常代谢、生长发育、生理功能和产量造成严重的危害(Madan,2015)。在非生物胁迫条件下,植物体内活性氧的生成和消除处于平衡状态,但是随着逆境胁迫越来越严酷,积累的活性氧越来越多,膜脂过氧化作用加剧,叶片质膜透性增加(全瑞兰等,2015),丙二醛(Malondialdehyde,MDA)含量显著提升,造成膜系统和多种酶损伤,同时植株体内活性氧的大量积累,这些成分会损伤细胞DNA、蛋白质、脂膜等组分(Gill and Tuteja,2010)。为了抵抗活性氧的损伤,植物形成了抗氧化酶系统。这套系统主要包括超氧化物歧化酶(Superoxide dismutase,SOD)和过氧化物酶(Peroxidase,POD)等(刘建新等,2010)。SOD可清除超氧自由基,而POD是植物体内维持活性氧代谢平衡的重要酶类之一,能有效清除SOD催化歧化反应生成的H2O2李芸瑛等,2004)。这些酶可以一定程度上缓解活性氧的过量积累,使活性氧在植物体内保持一个较低的、平衡的状态。SOD和POD作为2种重要的抗氧化酶,二者的活性和MDA含量是用来评估植物氧化还原状态的重要指标。通常情况下,较高的抗氧化酶活性和较低的MDA含量可以表明植物较强的抗逆境胁迫能力和较高的抗氧化能力(Ma et al.,2013),可以利用抗氧化酶和其它物质的共同作用来缓解膜脂过氧化,减少胁迫对植物细胞的危害(赵可夫,1993)。

而可溶性糖作为应激代谢物,是生物抗逆作用的一种重要物质,可以为植物体内其它必须物质的合成提供足够的碳架和能量,有助于维持植物细胞膜稳定和提高抗逆性(马光恕等,2010)。在抗虫性方面,可溶性糖含量与水稻对害虫的抗性相关,感虫品种含量明显高于抗虫品种(肖英方等,2001);稻飞虱为害后水稻可溶性糖含量下降,进而阻碍稻飞虱取食(彭高松,2011)。

褐飞虱Nilaparvata lugens是亚洲最严重的水稻害虫之一(Xue et al.,2010),在中国自2005年以来,褐飞虱每年造成数百万吨的水稻损害,严重时造成大片的水稻田绝收(Cheng and Zhu,2006)。褐飞虱主要是通过吸取水稻植株汁液引起稻株枯萎发黄,同时吸收水稻韧皮部汁液并传送植物病毒引起植物发病(Hibino,1996)。在水稻种植地区,目前最流行的控制褐飞虱的方法是使用化学杀虫剂。然而,滥用杀虫剂会造成严重的环境问题和褐飞虱抗药性的产生。因此需要制定新的防治战略,开发新型、高效的绿色农药,以减少对化学农药的使用。海藻糖与水稻抗虫性方面的研究还鲜有报道,因此海藻糖是否对水稻抗褐飞虱产生影响引起了我们的兴趣。

植株功能损失指数(Functional plant loss index,FPLI)的测定是研究植物抗虫性的一种方法,它能体现植物忍受或补偿害虫取食为害后再生长和再繁殖的能力(Strauss and Agrawal,1999;Simms,2000)。刺吸电位技术(Electrical penetration graph,EPG)是一种用来记录植食性昆虫刺吸式口器在寄主组织中刺探和取食行为的电生理技术,因其定位准确、直观,而成为研究刺吸式昆虫取食行为的重要手段。本研究对10 mmol∙L–1和50 mmol∙L–1浓度海藻糖处理的水稻进行POD、SOD、MDA以及可溶性糖的测定,探究不同浓度海藻糖溶液对水稻抗非生物胁迫能力的影响,以及通过植株功能损失指数的测定和EPG的方法对褐飞虱抗性进行进一步探究,旨在为日后进一步探究海藻糖对水稻抗逆性的影响提供参考。

1 材料与方法

1.1 实验材料

1.1.1 供试水稻 实验所采用的水稻品种为淮稻5号,选取颗粒饱满的种子,浸种催芽后播于装有土的塑料盒中(长38 cm,宽22 cm,高8 cm),待水稻长至大约4叶期后,取长势一致的水稻苗于塑料杯中(直径5 cm,高12 cm)土培,适时的肥水管理,等水稻长到适合的时期便可作为实验材料。

1.1.2 供试虫源 褐飞虱种群采自中国水稻研究所(中国杭州),在扬州大学生态实验室温室保种饲养,饲养条件:温度为(26±2) ℃,湿度为70%-80%,光周期为16 L:8 D。在外界环境适宜后,将温室褐飞虱转入试验田培养繁殖3代后方可供试验用。

1.2 水稻抗逆相关指标的测定

丙二醛(MDA)含量的测定采用分光光度计法(陈芊伊,2017);超氧物歧化酶(SOD)活性测定采用氮蓝四唑(NBT)法(Beauchamp and Fridovich,1971);采用愈创木酚法(Award,1990)测定水稻过氧化物酶(POD)活性;可溶性糖含量测定采用蒽酮法(陈芊伊,2017)。

1.3 褐飞虱取食经外源海藻糖处理的水稻后,水稻平均受害级别的测定

待水稻长至4叶期,取24株生长良好,长势一致的水稻苗,用10 mmol∙L–1和50 mmol∙L–1海藻糖叶面喷洒处理,每个处理均匀喷洒10 mL,对照为0.5%吐温溶液,每个处理8次重复。用透明塑料围成圆柱形沿杯插在土中,上罩以纱网用橡皮筋固定。处理24 h后,向每个罩有纱网的水稻苗上倒入30头2-3龄褐飞虱若虫,在正常环境下培养,适时做好肥水管理,7 d后检查每个塑料杯内的水稻受害等级,采用巫国瑞等(1986)的鉴定标准(表1)。

表1   水稻苗期对褐飞虱的抗性鉴定标准(巫国瑞等,1986

Table 1  Identification criteria of rice resistance to brown planthopper at seedling stage (Wu et al., 1986)

苗期受害等级(级)
Injury grade at seedling stage (level)
国际水稻研究所标准
The standard of International Rice Research Institute
0未受害 Unharmed
1受害很轻 Victimization is very light
3多数植株第1、第2叶变黄
The first and second leaves of most plants turn yellow
5植株明显变黄和矮化,或有半数以上植株枯萎、死亡
Plants become noticeably yellow and dwarfed, or more than half of the plants wither and die
7半数以上植株枯萎死亡,其余植株严重矮化,濒于死亡
More than half of the plants withered and died, and the remaining plants were severely dwarfed and were near death
9所有植株死亡 All plants die

新窗口打开| 下载CSV


1.4 褐飞虱取食经外源海藻糖处理的水稻后,植株功能损失指数(FPLI)的测定

对植株功能损失指数(FPLI)的计算依据陈建明(2014)的方法,采用叶面积测量。FPLI值越小, 耐虫性则越强。

$FPLI=1-\frac{未受害植株叶面积-被害植株叶面积}{未受害植株叶面积}\times (1-平均受害级别)\times 100\%$

1.5 外源海藻糖处理水稻后对褐飞虱取食行为的EPG分析

待水稻长至4叶期,取长势良好的单株水稻苗,10 mmol∙L–1和50 mmol∙L–1的外源海藻糖进行叶面处理,清水处理作为对照,每个处理共13次重复。24 h后,用吸虫管吸取适量2-3龄的褐飞虱若虫,饥饿处理1 h,迅速用银胶将褐飞虱的中胸背板连接在一根直径20 μm,长2-3 cm的金丝上,另一端与EPG仪器相连接。待全部的褐飞虱被粘牢之后,将褐飞虱小心放在水稻的茎秆上让其取食水稻,每株水稻上只放一只褐飞虱,每个处理共有13株水稻苗。EPG仪器的金属探针插入杯子里的土壤中,随后开启电源调整电压至每个通道的波形图都在画面正中央,持续8 h,记录数据。

1.6 统计分析

用 Microsoft Office Excel 2007、DPS 7.05统计软件分析所有数据。采用单因子或多因子方差分析,多重比较采用Fisher PLSD法,描述性统计值用平均值±标准误表示,显著性水平设置为α= 0.05,采用SigmaPlot 10.0制图。

2 结果与分析

2.1 外源海藻糖处理对水稻MDA、POD、SOD和可溶性糖含量的影响

不同浓度外源海藻糖处理后水稻叶片MDA含量、SOD活性、可溶性糖含量均与对照间有显著差异(F=12.96,df=2, 8, P<0.05;F=49.06, df=2, 8,P<0.05;F=55.53,df=2, 8,P<0.05),10 mmol∙L–1和50 mmol∙L–1的海藻糖处理MDA含量较对照分别降低了7.69%和14.69%(图1:A);SOD活性分别较对照分别显著上升了85.36%和59.37%(图1:B);可溶性糖含量较对照分别显著上升了16.78%和59.91%(图1:D),50 mmol∙L–1海藻糖处理后水稻可溶性糖含量明显高于10 mmol∙L–1的海藻糖处理。2种浓度处理后水稻叶片中的POD酶活性与对照差异不显著(图1:C)。

图1

图1   外源海藻糖对水稻生理生化特性的影响

A.丙二醛;B. 超氧化物歧化酶;C. 过氧化物酶;D. 可溶性糖。

数据表示为平均值±标准误。柱上标有不同字母表示在0.05水平上的显着差异(LSD法)。下图同。

Fig. 1   Effects of exogenous trehalose on physiological and biochemical characteristics of rice

A. Malondialdehyde (MDA); B.Superoxide dismutase (SOD); C. Peroxidase (POD); D. Soluble sugar.

Data are means±SE. Histograms with the different letters indicate significant difference at the 0.05 level by LSD test. The same below.


2.2 褐飞虱取食后水稻的平均受害级别及植株功能损失指数(FPLI)测定

10 mmol∙L–1和50 mmol∙L–1浓度的海藻糖处理后的水稻被褐飞虱取食后,水稻平均受害级别差异不显著(F=2.41, df=2, 21, P>0.05)(图2:A);水稻植株功能损失指数分别较对照显著上升了96.36%和55.02%(图2:B),不同浓度海藻糖处理与对照间差异显著(F=6.95, df=2,21, P<0.05)。

图2

图2   褐飞虱取食后水稻的平均受害级别及植株功能损失指数(FPLI)测定

A. 水稻平均受害级;B. 植株功能损失指数(FPLI)。

Fig. 2   Average injury scale and plant function loss index of rice after fed by BPH

A. Average injury scale; B. Functional plant loss index.


2.3 外源海藻糖处理水稻对褐飞虱取食行为的EPG分析

褐飞虱取食不同浓度海藻糖处理的水稻EPG行为测定结果如图3所示,10 mmol∙L–1和50 mmol∙L–1浓度海藻糖处理后,在非刺探阶段即NP波的持续时间与对照有显著差异,其中处理组高出对照20.74%,而处理间差异不显著(F=8.91,df=2, 21,P<0.05)。褐飞虱取食过程中,处理和对照组口针刺探总次数N1波无显著差异。N2波为褐飞虱口针开始向维管束移动并伴随有唾液的分泌,处理间无显著差异。褐飞虱取食50 mmol∙L–1海藻糖处理的水稻后,N3波口针取出临近韧皮部细胞外移动的持续时间相对对照组显著上升了39.19%,而10 mmol∙L–1海藻糖与对照组无显著差异(F=7.53,df=2, 21,P<0.05)。外源海藻糖处理水稻后与对照组在N4波的持续时间上差异显著(F=20.71,df=2, 21,P<0.05),N4波是褐飞虱在韧皮部吸食汁液时出现的波,N4持续时间分别较对照显著延长了30.44%(10 mmol∙L–1海藻糖)和11.01%(50 mmol∙L–1海藻糖)。褐飞虱取食木质部汁液即N5波的持续时间,对照组与两个处理组间无显著差异,但50 mmol∙L–1比10 mmol∙L–1海藻糖处理的N5波持续时间显著上升了76.73%。

图3

图3   褐飞虱在不同浓度海藻糖水稻上取食的EPG行为分析

NP:非刺探阶段的持续时间;N1:口针刺探次数;N2:口针在维管束移动的持续时间;N3:口针临近韧皮部细胞外移动的持续时间;N4:在韧皮部吸食汁液的持续时间;N5:吸食木质部汁液的持续时间。

Fig. 3   EPG analysis of BPH feeding behavior in rice treated with different concentrations of trehalose

NP: The duration of non probing stage; N1: The number of probing; N2: The duration of trocar movement in vascular bundle; N3: The duration of phloem extracellular movement; N4: The duration of sucking sap in phloem; N5: The duration of sucking xylem sap.


3 结论与讨论

由水稻在2种浓度的海藻糖处理后体内的丙二醛、SOD、POD以及可溶性糖含量的测定结果可见,适量海藻糖处理有利于水稻抗非生物胁迫能力的提高,这与早前的研究结果发现海藻糖可以一定程度提高水稻的非生物胁迫抗性一致(李莉等,2003)。而对于褐飞虱取食这一类生物胁迫,海藻糖处理后,实验结果显示水稻的耐虫性显著降低,生物胁迫和非生物胁迫出现的结果相反,这引起了我们的研究兴趣。

SOD、POD是清除活性氧酶促统中重要的酶类,MDA含量是植物细胞膜脂过氧化的一个重要指标(陈芊伊,2017)。三者的变化可以反应出植物在逆境中的抗胁迫能力(Ma et al.,2013)。在本实验中,MDA含量与海藻糖浓度变化呈负相关的关系,10 mmol∙L–1和50 mmol∙L–1海藻糖处理间差异不显著,这表明适量海藻糖处理可以提高水稻在逆境中的抗胁迫能力,MDA含量越小,细胞膜的损伤程度越小,越有利于根系维持地上部的生理活性(李明玉等,2006)。水稻经10 mmol∙L–1的海藻糖处理后,SOD与POD活性都表现上升的趋势,而高浓度(50 mmol∙L–1)处理水稻则会降低SOD与POD活性,其中POD活性对照与处理没有显著性差异,SOD活性对照与处理三者之间差异显著。由此可知,适量的海藻糖处理将有助于水稻中POD和SOD含量的提升。在植物体中,POD和SOD等抗氧化酶协同非酶的一些抗氧化物质,防御和减轻活性氧对细胞膜的伤害,缓解膜脂过氧化,提高水稻的抗逆性(徐婷等,2014)。

可溶性糖是一种在植物中起到渗透调节作用的小分子物质,在逆境中可调节植物的渗透,对细胞膜和原生质胶体也具有稳定作用(Yang et al.,2006)。本实验显示,适量的海藻糖处理可以增加水稻中的可溶性糖含量,提高植物体内的渗透调节能力,同时可以为其它必须物质的合成提供足够的碳架和能量, 有助于维持分蘖期水稻叶片细胞膜稳定和提高抗逆性。

植物耐虫性是植物靠着自身的生长以及繁殖能力等因素,在遭受与感虫品种相似的恶劣生物胁迫下,表现出的忍受逆境和补偿的能力(杨士杰,2005)。本实验表明,与对照相比,海藻糖处理后的水稻接入褐飞虱后,水稻功能损失指数显著上升;水稻平均受害级别差异不显著,而植株功能损失指数的差异显著。这可能是由于海藻糖影响植株的光合作用,植物叶片的光合作用是对逆境响应最敏感的生理过程(庞椿朋等,2017),这导致检测时植株功能损失指数发生了差异变化。我们发现海藻糖处理降低了水稻的耐虫性,这与水稻遭受非生物胁迫时,适量的海藻糖处理有利于水稻抗逆性提高的结论出现了矛盾(Olivier et al.,2010)。这可能是海藻糖在植物细胞逆境适应中的积极和消极影响存在双面性(龙正龄,2014),因此对海藻糖在水稻抗褐飞虱上是否为一个双面分子的研究是很有价 值的。

EPG是一种用来记录刺吸式口器昆虫口针在寄主组织中的刺探行为的技术。EPG可以准确地记录刺吸式口器昆虫口针在寄主组织中的刺探行为和位置,使昆虫口针在叶片内的活动转化成一种看得见的信号(Miao and Han,2008)。同时,EPG技术也可作为快速筛选抗性植物的一种生测手段(雷宏和徐汝梅,1998)。在NP波的持续时间上,10 mmol∙L–1和50 mmol∙L–1海藻糖处理导致持续时间的缩短,处理组与对照组差异显著,这表示海藻糖明显加快褐飞虱对水稻的识别和取食进程。N1波和N2波的持续时间上,处理组和对照组差异不显著,表示海藻糖处理对褐飞虱的口针刺探次数,与口针在维管束的移动过程没有显著影响。N3波是Velusamy和Heinirichs(1986)发现的褐飞虱特有的波形,50 mmol∙L–1海藻糖处理显著提高N3波的持续时间,这表示高浓度的海藻糖会提高褐飞虱的口针临近韧皮部细胞外移动的持续时间。N4波是褐飞虱在韧皮部吸食汁液时出现的波,较短时间甚至没有韧皮部取食可以推断韧皮部存在抗性因子,因此它是衡量植物抗性的重要标志(罗晨等,2005)。本实验中N4波显示对照组和处理组间差异显著,10 mmol∙L–1海藻糖处理的水稻N4波的持续时间最长,50 mmol∙L–1海藻糖处理其次,结合NP波的结果从侧面证明了海藻糖处理利于褐飞虱的取食。

有研究表明,昆虫本身的发育、生理和行为状态也会直接影响昆虫的取食行为(荆裴等,2013)。本实验对水稻在海藻糖处理后耐虫性的变化进行研究,包括平均受害级别、功能损失指数以及EPG三个方面,初步得出结论是海藻糖处理有利于褐飞虱对水稻的取食。在本研究之前还未有对海藻糖处理与水稻耐虫性相关研究,因此在现有结论的基础上,我们将会进一步对褐飞虱取适量、取食倾向以及产卵量等方面做进一步的研究。此外,根据现有的结论,我们发现随着海藻糖浓度由10 mmol∙L–1升高为50 mmol∙L–1,并没有促进褐飞虱对水稻的识别和取食进程,而是一定程度上阻碍了褐飞虱的取食,而是否更高浓度的海藻糖会让水稻的耐虫性等于甚至高于对照组的水稻,也值得进一步研究。

关于海藻糖对植物非生物胁迫抗性的影响前人已经做过详细的研究,普遍的认为它对植物是有正面效应的,但是在另一方面,海藻糖是否会更利于害虫对植株的取食,目前相关的研究还很少。本实验从非生物胁迫和生物胁迫两个方面探究了海藻糖处理对水稻抗逆性的影响,发现海藻糖对水稻抗非生物胁迫能力具有积极影响,然而却利于褐飞虱对水稻的取食,削弱了对褐飞虱抗性,表明海藻糖对于水稻来说是一个双面分子。本实验将会对此进一步地去深入研究。

参考文献

Abebe T, Guenzi AC, Martin B, Cushman JC , 2003.

Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity

Plant Physiology, 131(4):1748-1755.

DOI:10.1104/pp.102.003616      URL     PMID:12692333      [本文引用: 1]

Previous work with model transgenic plants has demonstrated that cellular accumulation of mannitol can alleviate abiotic stress. Here, we show that ectopic expression of the mtlD gene for the biosynthesis of mannitol in wheat improves tolerance to water stress and salinity. Wheat (Triticum aestivum L. cv Bobwhite) was transformed with the mtlD gene of Escherichia coli. Tolerance to water stress and salinity was evaluated using calli and T(2) plants transformed with (+mtlD) or without (-mtlD) mtlD. Calli were exposed to -1.0 MPa of polyethylene glycol 8,000 or 100 mM NaCl. T(2) plants were stressed by withholding water or by adding 150 mM NaCl to the nutrient medium. Fresh weight of -mtlD calli was reduced by 40% in the presence of polyethylene glycol and 37% under NaCl stress. Growth of +mtlD calli was not affected by stress. In -mtlD plants, fresh weight, dry weight, plant height, and flag leaf length were reduced by 70%, 56%, 40%, and 45% compared with 40%, 8%, 18%, and 29%, respectively, in +mtlD plants. Salt stress reduced shoot fresh weight, dry weight, plant height, and flag leaf length by 77%, 73%, 25%, and 36% in -mtlD plants, respectively, compared with 50%, 30%, 12%, and 20% in +mtlD plants. However, the amount of mannitol accumulated in the callus and mature fifth leaf (1.7-3.7 micromol g(-1) fresh weight in the callus and 0.6-2.0 micromol g(-1) fresh weight in the leaf) was too small to protect against stress through osmotic adjustment. We conclude that the improved growth performance of mannitol-accumulating calli and mature leaves was due to other stress-protective functions of mannitol, although this study cannot rule out possible osmotic effects in growing regions of the plant.

Award M , 1990.

Prospect of microencapusating red phosphorus

Chemistry Industry, ( 8):19-21.

[本文引用: 1]

Beauchamp C, Fridovich I , 1971.

Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels

Analytical Biochemistry, 44(1):276-287.

DOI:10.1016/0003-2697(71)90370-8      URL     PMID:4943714      [本文引用: 1]

Chen JM , 2004.

Tolerance of rice varieties to brown planthopper damage and its physiological mechanism

Doctoral dissertation. Zhejiang: Zhejiang University.

[本文引用: 1]

[ 陈建明 , 2004.

水稻品种对褐飞虱为害的耐性及其生理机制研究

博士学位论文. 浙江: 浙江大学.]

[本文引用: 1]

Chen QY , 2017.

Study on enhancement of tobacco resistance to common mosaic disease by exogenous trehalose. Master dissertation.

Henan: Henan Agricultural University.

[本文引用: 3]

[ 陈芊伊 , 2017.

外源海藻糖增强烟草对普通花叶病抗性的研究

硕士学位论文. 河南: 河南农业大学.]

[本文引用: 3]

Cheng JA, Zhu ZR , 2006.

Analysis on the key factors causing the outbreak of brown planthopper in Yangtze Area, China in 2005

Plant Protection, 32(4):1-4.

[本文引用: 1]

Crowe JH, Carpenter JF, Crowe LM , 1998.

The role of vitrification in anhydrobiosis

Annual Review of Physiology, 60(1):73-103.

DOI:10.1146/annurev.physiol.60.1.73      URL     [本文引用: 1]

Elbein AD , 1974.

The metabolism of α, α-trehalose

Advances in Carbohydrate Chemistry and Biochemistry, ( 30):227-256.

[本文引用: 1]

Gill SS, Tuteja N , 2010.

Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants

Plant Physiology and Biochemistry, 48(12):909-930.

DOI:10.1016/j.plaphy.2010.08.016      URL     [本文引用: 1]

AbstractVarious abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O2−, superoxide radicals; OH, hydroxyl radical; HO2, perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H2O2, hydrogen peroxide and 1O2, singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of 1O2 and O2−. In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O2−. The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.Research highlights? Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates, DNA which ultimately results in oxidative stress. ? The antioxidant defense machinery protects plants against oxidative stress damages. ? Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ? ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery.]]>

Goddijn O, Dun K , 1999.

Trehalose metabolism in plants

Trends in Plant Science, 4(8):315-319.

DOI:10.1016/s1360-1385(99)01446-6      URL     PMID:10431221      [本文引用: 1]

It has long been thought that the biosynthesis of trehalose, a sugar present in all kingdoms, is absent from the vast majority of higher plants. However, recent experiments have indicated that genes from Arabidopsis are able to complement yeast strains deficient in trehalose metabolism. In yeast, trehalose has been suggested as a regulatory component in the control of glycolytic flux and in a variety of stress survival strategies. Thus, the occurrence of complimentary genes in Arabidopsis and yeast might lead to the development of strategies and applications for improvement of crop plants.

Goddijn O, Smeekens S , 1998.

Sensing trehalose biosynthesis in plants

Plant Journal, 14(2):143-146.

DOI:10.1046/j.1365-313x.1998.00140.x      URL     PMID:9628011      [本文引用: 1]

A most unexpected finding in research on plant carbohydrate metabolism is the recent discovery that angiosperms encode genes whose products are involved in trehalose metabolism. The presence and functionality of such genes has been elegantly shown by expressing Arabidopsis-derived trehalose phosphate synthase and trehalose phosphate phosphatase genes in yeast mutants lacking these enzymatic activities. Homologue sequences have now been cloned from a number of different plant species suggesting that the capacity to synthesise trehalose is ubiquitous in angiosperms. Except for Myrothamnus flabellifolius, trehalose biosynthesis has never been observed in tissues of higher plants, probably due to the presence of high levels of trehalase activity. The function of trehalose metabolism in plants is still a mystery. One of the postulated functions of trehalose metabolism in yeast is in the control of glucose repression and a similar function in sugar sensing can be proposed for plants as well.

Govind SR, Sudisha J, Mostafa A, Shetty HS, Tran LP , 2016.

Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet

Frontiers in Plant Science, ( 7):1593.

[本文引用: 1]

Hibino H , 1996.

Biology and epidemiology of rice viruses

Annual Review of Phytopathology, 34(1):249-274.

DOI:10.1146/annurev.phyto.34.1.249      URL     [本文引用: 1]

Jing P, Bai SF, Liu F , 2013.

Preliminary study on spike potential waveform of feeding behavior of Laodelphax striatellus

Chinese Journal of Applied Entomology, 50(3):758-763.

[本文引用: 1]

[ 荆裴, 白素芬, 刘芳 , 2013.

灰飞虱取食行为刺吸电位波形的初步研究

应用昆虫学报, 50(3):758-763.]

[本文引用: 1]

Lei H, Xu RM , 1998.

EPG study on feeding behavior of whitefly in greenhouse

Acta Entomologica Sinica, 41(2):113-123.

URL     [本文引用: 1]

Trialeurodes vaporariorum (Westwood),and its probing, feeding and ovipositing activities. The potential application of this method in interpretating the resistance mechanisms against whitefly was also discussed.For whitefly adults, the A pattern and C pattern represent the probing initiation on the leaf surface and probing process in the mesophyll. The G pattern indicates xylem drinking and the E(pd), (1) & (2) are two different activities in sieve element and thus relate to phloem ingestion. Moreover, oviposition can be observed from EPG recordings, consisting of two subpatterns termed as Ovi-I and Ovi-II. For whitefly larvae, the H pattern indicates phloem ingestion but L pattern not, though still in sieve element. A procedure of styler withdrawal and repenetration occurs before and after moulting.]]>

[ 雷宏, 徐汝梅 , 1998.

温室白粉虱取食行为的刺探电位(EPG) 研究

昆虫学报, 41(2):113-123.]

[本文引用: 1]

Li L, Huang QC, Qin GY , 2003.

Research progress of trehalose in improving plant stress resistance

Bulletin of Biology, 38(6):6-7.

[本文引用: 1]

[ 李莉, 黄群策, 秦广雍 , 2003.

海藻糖在提高植物抗逆性方面的研究进展

生物学通报, 38(6):6-7.]

[本文引用: 1]

Li MY, Cao ZX, Yu XY , 2006.

Effects of low temperature exercise on protective enzymes of cucumber seedlings under cold stress

Acta Agriculturae Boreali-occidentalis Sinica, 15(1):160-164.

[本文引用: 1]

[ 李明玉, 曹辰兴, 于喜艳 , 2006.

低温锻炼对冷胁迫下黄瓜幼苗保护性酶的影响

西北农业学报, 15(1):160-164.]

[本文引用: 1]

Li YY, Liang GJ, Li YH, Ye QS , 2004.

Effect of exogenous betaine on cold resistance of cucumber seedlings

Plant Physiology Communications, 40(6):673-676.

[本文引用: 1]

[ 李芸瑛, 梁广坚, 李永华, 叶庆生 , 2004.

外源甜菜碱对黄瓜幼苗抗冷性的影响

植物生理学通讯, 40(6):673-676.]

[本文引用: 1]

Liu JX, Wang X, Li BP , 2010.

Effects of exogenous nitric oxide donor SNP on ascorbic acid-glutathione cycle in ryegrass seedlings leaves under NaCl stress

Acta Prataculturae Sinica, 19(2):82-88.

DOI:10.11686/cyxb20100212      URL     [本文引用: 1]

[ 刘建新, 王鑫, 李博萍 , 2010.

外源一氧化氮供体SNP对NaCl胁迫下黑麦草幼苗叶片抗坏血酸-谷胱甘肽循环的影响

草业学报, 19(2):82-88.]

[本文引用: 1]

Long ZL , 2014.

The role of trehalose in plant response and adaptation to stress

Journal of Anhui Agricultural Sciences, 449(16):4956-4959.

[本文引用: 1]

[ 龙正龄 , 2014.

海藻糖在植物对逆境胁迫响应与适应中的作用

安徽农业科学, 449(16):4956-4959.]

[本文引用: 1]

Luo C, Yue M, Xu HF, Zhang ZL , 2005.

Application and progress of EPG technology in entomology research

Acta Entomologica Sinica, 48(3):437-443.

URL     [本文引用: 1]

The electrical penetration graph (EPG) technology is more and more widely used in studying piercing sucking insects, such as aphid, whitefly, leafhopper and thrips. Especially for aphid and whitefly, it has been adopted to study host speciality, plant resistance and virus transmission. We reviewed the research progress and application prospects of EPG through examples of typical piercing sucking insects. ]]>

[ 罗晨, 岳梅, 徐洪富, 张芝利 , 2005.

EPG技术在昆虫学研究中的应用及进展

昆虫学报, 48(3):437-443.]

[本文引用: 1]

Ma C, Wang ZQ, Kong BB, Lin TB , 2013.

Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery

Plant Growth Regulation, 70(3):275-285.

DOI:10.1007/s10725-013-9799-2      URL     [本文引用: 2]

To elucidate the resistance mechanism of exogenous trehalose on water deficit further, we investigated the effect of exogenous trehalose (50 mM) in wheat callus during water deficit and subsequent recovery. Enhanced levels of endogenous trehalose were detected in calli exposed to water deficit (W) and trehalose (T) medium, moreover, W plus T treatment showed an additive effect. Water deficit elevated the accumulation of ROS (hydrogen peroxide and formation rate of O2.−) and the endogenous MDA (Malonaldehyde), and resulted in the decrease of cell viability and biomass. Exogenous trehalose (TW) could alleviate the damage induced by water deficit, which was involved in the decrease of MDA and the generation of ROS, and resulted in elevating cell viability and biomass. Additionally, water deficit induced activity of antioxidative enzymes (Peroxidase, POD; Catalase, CAT; Glutathione reductase, GR). Content of AsA (Reduced ascorbate) was also increased by water deficit, while the content of GSH (Glutathione) showed the opposite effect. The combined effect of T and W treatment led to a higher activity of enzymatic antioxidants including SOD (Superoxide dismutase) and GR, and elevated the content of nonenzymatic antioxidants including AsA and GSH, but had a negative effect on enzymatic antioxidants including POD and CAT in comparison to the water deficit treatment alone. During recovery, calli treated by TW showed a greater reduction in ROS resulted in enhancing a higher cell viability and biomass. The scavenging mechanism of ROS by exogenous trehalose is mainly dependent on nonenzymatic antioxidants, especially AsA-GSH cycle, rather than enzymatic mechanisms and trehalose itself.]]>

Ma GS, Yang J, Lian H, Wang RH, Wu X , 2010.

Effects of trehalose on osmotic regulators and enzyme activities of tomato under salt stress

Northern Horticulture, ( 6):59-61.

[本文引用: 1]

[ 马光恕, 杨瑾, 廉华, 王茹华, 吴瑕 , 2010.

盐胁迫下海藻糖对番茄渗透调节物及酶活性的影响

北方园艺, ( 6):59-61.]

[本文引用: 1]

Madan S , 2015.

Trehalose mitigates heat stress-induced damages in wheat seedlings

Journal of Wheat Research, 7(1):74-78.

[本文引用: 1]

Miao J, Han BY , 2008.

DC-EPG analysis on effect of tea plant induced by methyl salicylate against feeding of tea green leafhopper

Acta Phytophylacica Sinica, 35(2):143-147.

[本文引用: 1]

Olivier F, Linda B, Anthony Q, Rajbir SS, Christophe C , 2010.

Trehalose and plant stress responses: Friend or foe?

Trends in Plant Science, 15(7):409-417.

DOI:10.1016/j.tplants.2010.04.004      URL     [本文引用: 1]

The disaccharide trehalose is involved in stress response in many organisms. However, in plants, its precise role remains unclear, although some data indicate that trehalose has a protective role during abiotic stresses. By contrast, some trehalose metabolism mutants exhibit growth aberrations, revealing potential negative effects on plant physiology. Contradictory effects also appear under biotic stress conditions. Specifically, trehalose is essential for the infectivity of several pathogens but at the same time elicits plant defense. Here, we argue that trehalose should not be regarded only as a protective sugar but rather like a double-faced molecule and that further investigation is required to elucidate its exact role in stress tolerance in plants.

Pang CP, Ye L, Ma J, Lu T, Yang ZY, Qi MF , 2017.

Regulation of trehalose on photosynthesis of tomato seedling leaves under high temperature

Jiangsu Agricultural Sciences, 45(21):151-154.

[本文引用: 1]

[ 庞椿朋, 叶亮, 马健, 路涛, 杨宗艺, 齐明芳 , 2017.

海藻糖对高温下番茄幼苗叶片光合作用的调控作用

江苏农业科学, 45(21):143-146.]

[本文引用: 1]

Peng GS , 2011.

Preliminary study on resistance mechanism of different rice varieties to laodelphax striatellus. Master thesis.

Henan: Henan Normal University.

[本文引用: 1]

[ 彭高松 , 2011.

不同水稻品种对灰飞虱抗性机理的初步研究

硕士学位论文. 河南:河南师范大学.]

[本文引用: 1]

Quan RL, Wang QL, Ma HY, Fu D, Huo EW, Shen GH, Guo GY , 2015.

Effects of drought on rice growth and development and research progress on drought resistance

China Seed Industry, ( 9):12-14.

[本文引用: 1]

[ 全瑞兰, 王青林, 马汉云, 扶定, 霍二伟, 沈光辉, 郭桂英 , 2015.

干旱对水稻生长发育的影响及其抗旱研究进展

中国种业, ( 9):12-14.]

[本文引用: 1]

Simms EL , 2000.

Defining tolerance as a norm of reaction

Evolutionary Ecology, 14(4):563-570.

DOI:10.1023/A:1010956716539      URL     [本文引用: 1]

Strauss SY, Agrawal AA , 1999.

The ecology and evolution of plant tolerance to herbivory

Trends in Ecology & Evolution, 14(5):179-185.

DOI:10.1016/s0169-5347(98)01576-6      URL     PMID:10322530      [本文引用: 1]

The tolerance of plants to herbivory reflects the degree to which a plant can regrow and reproduce after damage from herbivores. Autoecological factors, as well as the influence of competitors and mutualists, affect the level of plant tolerance. Recent work indicates that there is a heritable basis for tolerance and that it can evolve in natural plant populations. Although tolerance is probably not a strict alternative to plant resistance, there could be inter- and intraspecific tradeoffs between these defensive strategies.

Velusamy R, Heinrichs EA , 1986.

Electronic monitoring of feeding behavior of Nilaparvata lugens(Homoptera: Delphacidae) on resistant and susceptible rice cultivars

Environmental Entomology, 15(3):678-682.

DOI:10.1093/ee/15.3.678      URL     [本文引用: 1]

Wiemken A , 1990.

Trehalose in yeast, stress protectant rather than reserve carbohydrate

Antonie van Leeuwenhoek, 58(3):209-217.

DOI:10.1007/BF00548935      URL     PMID:2256682      [本文引用: 1]

Trehalose and glycogen are generally regarded as the two main reserve carbohydrates in yeast. However, several lines of evidence suggest that trehalose does not primarily function as a reserve but as a highly efficient protecting agent to maintain structural integrity of the cytoplasm under environmental stress conditions.

Wu GR, Tao LY, Chen FY, Hu GW , 1986.

Discussion on screening methods of rice resistance to white-backed planthopper

Acta Entomologica Sinica, 29(4):453-455.

[本文引用: 3]

[ 巫国瑞, 陶林勇, 陈福云, 胡国文 , 1986.

水稻对白背飞虱抗性筛选方法的探讨

昆虫学报, 29(4):453-455.]

[本文引用: 3]

Xiao YF, Zhang CZ, Gu ZY , 2001.

Resistance mechanism of rice varieties to white-backed planthopper

Acta Phytophylacica Sinica, 28(3):198-202.

[本文引用: 1]

[ 肖英方, 张存政, 顾正远 , 2001.

水稻品种对白背飞虱的抗性机理

植物保护学报, 28(3):198-202.]

[本文引用: 1]

Xu T, Zhou CY, Zhou C, Zhao S, Wu LL, Tan KF , 2014.

Effects of trehalose on antioxidant system of muskmelon seedlings under salt stress

Northern Horticulture, ( 19):28-30.

[本文引用: 1]

[ 徐婷, 周传余, 周超, 赵索, 武琳琳, 谭可菲 , 2014.

海藻糖对盐胁迫下薄皮甜瓜幼苗抗氧化系统的影响

北方园艺, ( 19):28-30.]

[本文引用: 1]

Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA, Zhang CX , 2010.

Transcriptome analysis of the brown planthopper Nilaparvata lugens

PLoS ONE, 5(12):e14233.

DOI:10.1371/journal.pone.0014233      URL     PMID:21151909      [本文引用: 1]

BACKGROUND: The brown planthopper (BPH) Nilaparvata lugens (Stal) is one of the most serious insect pests of rice in Asia. However, little is known about the mechanisms responsible for the development, wing dimorphism and sex difference in this species. Genomic information for BPH is currently unavailable, and, therefore, transcriptome and expression profiling data for this species are needed as an important resource to better understand the biological mechanisms of BPH. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed de novo transcriptome assembly and gene expression analysis using short-read sequencing technology (Illumina) combined with a tag-based digital gene expression (DGE) system. The transcriptome analysis assembles the gene information for different developmental stages, sexes and wing forms of BPH. In addition, we constructed six DGE libraries: eggs, second instar nymphs, fifth instar nymphs, brachypterous female adults, macropterous female adults and macropterous male adults. Illumina sequencing revealed 85,526 unigenes, including 13,102 clusters and 72,424 singletons. Transcriptome sequences larger than 350 bp were subjected to Gene Orthology (GO) and KEGG Orthology (KO) annotations. To analyze the DGE profiling, we mainly compared the gene expression variations between eggs and second instar nymphs; second and fifth instar nymphs; fifth instar nymphs and three types of adults; brachypterous and macropterous female adults as well as macropterous female and male adults. Thousands of genes showed significantly different expression levels based on the various comparisons. And we randomly selected some genes to confirm their altered expression levels by quantitative real-time PCR (qRT-PCR). CONCLUSIONS/SIGNIFICANCE: The obtained BPH transcriptome and DGE profiling data provide comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms from various physiological aspects including development, wing dimorphism and sex difference in BPH.

Yang SJ , 2005.

Resistance of hybrid offspring of medicinal wild rice to Cnaphalocrocis medinalis

Journal of Anhui Agricultural Sciences, 33(4):570.

[本文引用: 1]

[ 杨士杰 , 2005.

药用野生稻杂交后代对稻纵卷叶螟的抗性

安徽农业科学, 33(4):570.]

[本文引用: 1]

Yang SH , 2006.

Effects of salt stress on plants and the mechanism of salt tolerance

World Sci-tech R&D, 28(4):70-76.

[本文引用: 1]

Zhao KF , 1993. Salt Tolerance Physiology of Plants. Beijing: China Science and Technology Press. 25-30.

[本文引用: 1]

[ 赵可夫 , 1993. 植物抗盐生理. 北京: 中国科技出版社. 25-30.]

[本文引用: 1]

/